• Title/Summary/Keyword: 이산화탄소 누출

Search Result 36, Processing Time 0.034 seconds

Effect Assessment and Derivation of Ecological Effect Guideline on CO2-Induced Acidification for Marine Organisms (이산화탄소 증가로 인한 해수 산성화가 해양생물에 미치는 영향평가 및 생태영향기준 도출)

  • Gim, Byeong-Mo;Choi, Tae Seob;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil;Jeon, Ei-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.153-165
    • /
    • 2014
  • Carbon dioxide capture and storage (CCS) technology is recognizing one of method responding the climate change with reduction of carbon dioxide in atmosphere. In Korea, due to its geological characteristics, sub-seabed geological $CO_2$ storage is regarded as more practical approach than on-land storage under the goal of its deployment. However, concerns on potential $CO_2$ leakage and relevant acidification issue in the marine environment can be an important subject in recently increasing sub-seabed geological $CO_2$ storage sites. In the present study effect data from literatures were collected in order to conduct an effect assessment of elevated $CO_2$ levels in marine environments using a species sensitivity distribution (SSD) various marine organisms such as microbe, crustacean, echinoderm, mollusc and fish. Results from literatures using domestic species were compared to those from foreign literatures to evaluate the reliability of the effect levels of each biological group and end-point. Ecological effect guidelines through estimating level of pH variation (${\delta}pH$) to adversely affect 5 and 50% of tested organisms, HC5 and HC50, were determined using SSD of marine organisms exposed to the $CO_2$-induced acidification. Estimated HC5 as ${\delta}pH$ of 0.137 can be used as only interim quality guideline possibly with adequate assessment factor. In the future, the current interim guideline as HC5 of ${\delta}pH$ in this study will look forward to compensate with supplement of ecotoxicological data reflecting various trophic levels and indigenous species.

Ambient CO2 Measurement Using Raman Lidar (라만 라이다를 이용한 대기 중 이산화탄소 혼합비 측정)

  • Kim, Daewon;Lee, Hanlim;Park, Junsung;Choi, Wonei;Yang, Jiwon;Kang, Hyeongwoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1187-1195
    • /
    • 2019
  • We, for the first time, developed a Raman lidar system which can remotely detect surface CO2 volume mixing ratio (VMR). The Raman lidar system consists of the Nd: YAG laser of wavelength 355 nm with 80 mJ, an optical receiver, and detectors. Indoor CO2 cell measurements show that the accuracy of the Raman lidar system is calculated to be 99.89%. We carried out the field measurement using our Raman lidar at Pukyong National University over a seven-day period in October 2019. The results show good agreement between CO2 VMRs measured by the Raman lidar (CO2 Raman Lidar) and those measured by in situ instruments (CO2 In situ) which located 300 m and 350 m away from the Raman lidar system. The correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE) between CO2 In situ and CO2 Raman Lidar are 0.67, 2.78 ppm, and 3.26 ppm, respectively.

Cellular Energy Allocation of a Marine Polychaete Species (Perinereis aibuhitensis) Exposed to Dissolving Carbon Dioxide in Seawater (해수 중 용존 이산화탄소 농도 증가가 두토막눈썹참갯지렁이(Perinereis aibuhitensis)의 세포내 에너지 할당에 미치는 영향)

  • Moon, Seong-Dae;Lee, Ji-Hye;Sung, Chan-Gyoung;Choi, Tae Seob;Lee, Kyu-Tae;Lee, Jung-Suk;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • An experiment was conducted to evaluate the biochemical adverse effect of increased carbon dioxide in seawater on marine polychaete, Perinereis aibuhitensis. We measured the available energy reserves, Ea (total carbohydrate, protein, and lipid content) and the energy consumption, Ec (electron transport activity) of Perinereis aibuhitensis exposed for 7-d to a range of $CO_2$ concentration such as 0.39 (control =390 ppmv), 3.03 (=3,030 ppmv), 10.3 (=10,300 ppmv), and 30.1 (=30,100 ppmv) $CO_2$ mM, respectively. The cellular energy allocation (CEA) methodology was used to assess the adverse effects of toxic stress on the energy budget of the test organisms. The results of a decrease in CEA effect of increased carbon dioxide in seawater from all individual in Ea and Ec. Increase of carbon dioxide reduced pH in seawater, significantly. The chemical changes in sea- water caused by increasing $pCO_2$ might cause stresses to test organisms and changes in the cellular energy allocations. Results of this study can be used to understand the possible influence of $CO_2$ concentration increased by the leakage from sub-sea bed storage sites as well as fossil fuel combustion on marine organisms.

Association of Hypercapnia in the First Week of Life with Severe Intraventricular Hemorrhage in the Ventilated Preterm Infants (기계적 환기 요법을 시행 받은 미숙아에서 고탄산혈증과 뇌실내 출혈의 발생과의 관계)

  • Kim, Jeong-Eun;Namgung, Ran;Park, Min-Soo;Park, Kook-In;Lee, Chul;Kim, Myung-Jun
    • Neonatal Medicine
    • /
    • v.17 no.1
    • /
    • pp.34-43
    • /
    • 2010
  • Purpose : The aim of this study was to examine whether hypercapnia during the first seven days of life was associated with severe intraventricular hemorrhage (IVH) in preterm infants requiring mechanical ventilation. Methods : A matched pair analysis was performed for 19 preterm infants with severe IVH(grade$\geq$3) and 38 infants with no severe IVH (normal or grade 1), who required mechanical ventilation for more than seven days. The univariate and multivariate analysis of severe IVH with maximal and minimal $PaCO_2$, averag $PaCO_2$, SD of $PaCO_2$, and difference in the $PaCO_2$ were assessed. The major perinatal factors and maximal ventilator index (VI) were also compared. Results : Infants with severe IVH had a higher maximal $PaCO_2$ (86.1$\pm$18.4 mmHg vs. 60.1$\pm$ 11.6 mmHg, P <0.001) and mean $PaCO_2$ (47.5$\pm$5.6 mmHg vs. 41.2$\pm$6.3 mmHg, P=0.004) and a larger SD or difference in $PaCO_2$ (14.0$\pm$4.4 mmHg vs. 9.0$\pm$2.4 mmHg; 60.3$\pm$20.9 mmHg vs. 35.5$\pm$11.8 mmHg, P <0.001). However the minimal $PaCO_2$ values did not differ between the groups. Disseminated intravascular coagulation, pulmonary hemorrhage, and the air leak syndrome were more frequent in the IVH group than in the controls. The maximal VI on each day was higher in the IVH group. The multivariate logistic regression analysis after controlling for bleeding tendency showed that the air leak syndrome, maximal VI, and maximal $PaCO_2$ were independently associated with severe IVH [OR, 1.324 (95% CI, 1.011-1.733; P=0.041)]. Conclusion : Extreme hypercapnia was significantly associated with severe IVH in preterm infants, after adjustment for major perinatal risk factors. Frequent monitoring of the $PaCO_2$ may be important for early detection of inadvertent hypercapnia and prompt correction of high PaCOS levels.

Evaluation System of Environmental Safety on Marine Geological Sequestration of Captured Carbon Dioxide (이산화탄소의 해양지중저장과 환경 안전성 평가 방안)

  • Gim, Byeong-Mo;Choi, Tae Seob;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil;Jeon, Ei-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.42-52
    • /
    • 2013
  • Carbon Capture and Storage (CCS) is a mitigation technology essential in tackling global climate change. In Korea, many research projects are aimed to commercialize CCS business around 2020. Public acceptance can be a key factor to affect the successful proceeds of CCS near future. Therefore this paper provides a concise insight into the application of environmental impact assessment and risk assessment procedures to support the sustainable CCS projects. Futhermore, bottlenecks regarding the environmental impacts assessment and related domestic and foreign legislation are revised. Finally, suggestions to overcome these bottlenecks and recommendations for future research are made in conclusion.

Geophysics for Carbon Capture and Storage in Korea (국내 CO2 지중저장과 지구물리탐사의 역할)

  • Hwang, Se-Ho;Park, Kwon-Gyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.16-19
    • /
    • 2009
  • Recently, CO2 geologic storage (geologic sequestration) has been concerned as one of methodologies for reducing greenhouse gas. We expect that geophysical approach plays an important role in the site selection, characterization, and monitoring during CO2 injection or post-injection. Especially we believe that monitoring and verification technologies such as surface and borehole geophysical methods are an important part of making CO2 geologic storage an acceptable method.

  • PDF

Greenhouse Gas ($CO_2$) Geological Sequestration and Geomechanical Technology Component (온실가스($CO_2$) 지중저장과 암반공학적 기술요소)

  • Kim, Hyung-Mok;Park, Eui-Seob;Synn, Joong-Ho;Park, Yong-Chan
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.175-184
    • /
    • 2008
  • In this study, state-of-the-art of $CO_2$ geological sequestration as a method of greenhouse gas reduction was reviewed. Thermal-Hydraulic-Mechanically(THM) coupled simulation technology and its application to a stability analysis of geological formation due to $CO_2$ injection as well as a leakage path analysis were investigated and introduced.

Mechanical Properties and Failure Behavior of Grouting Cements for a $CO_2$-Injection Hole (이산화탄소 주입공 그라우팅 시멘트의 역학적 물성 및 파괴 거동)

  • Park, Mi-Hee;Chang, Chan-Dong;Jo, Yeong-Uk;Choo, Min-Kyoung;Yum, Byoung-Woo
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.147-156
    • /
    • 2011
  • We conducted laboratory experiments to determine the physical and mechanical properties, and the failure behaviors, of cements for use as grouting material in a $CO_2$-injection borehole. Samples with lour different ratios of water to cement mass (0.4, 1, 2, and 3) were tested. The analyzed properties (porosity, sonic velocity, modulus, and compressive and tensile strengths) varied systematically as a function of the ratio of water to cement (w/c), showing a sharp change between w/c ratios of 0.4 and 1. Triaxial compression tests revealed a clear boundary between brittle and ductile failure depending on the w/c ratio and confining pressure. The present results can be utilized as input parameters for numerical models to understand the initial deformation and failure behavior of grouting cements in a $CO_2$-injection borehole.

Site Investigation for Pilot Scale $CO_2$ Sequestration by Magnetotelluric Surveys in Uiseong, Korea (이산화탄소 지중저장 Pilot 부지 선정을 위한 의성지역 MT 탐사)

  • Lee, Tae-Jong;Han, Nu-Ree;Ko, Kwang-Beom;Hwang, Se-Ho;Park, Kwon-Gyu;Kim, Hyung-Chan;Park, Yong-Chan
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.299-308
    • /
    • 2009
  • A magentotelluric (MT) survey at the Uiseong area has been performed for the site investigation of pilot scale $CO_2$ sequestration. The purpose of the MT survey is to delineate deeply extended fracture systems that can act as a leakage path of injected $CO_2$ Plume. Since the target area is extremely noisy in electromagentic sense, low frequency data below 1 Hz cannot be used for inversion. Two- and three-dimensional interpretation of the MT data showed a very clear conductive anomaly, which has the direction of $N55\sim65^{\circ}W$ and is extended roughly down to 1.6 km. It have the same direction with the strike-slip faults, the Gaeum and Geumcheon Faults. On the contrary, the eastern part of the survey area shows relatively homogeneous to the depth of 2 km though some small fractures at shallow depths can be found. Test drilling and high-definition borehole surveys should be followed at the eastern part of the survey area and hydraulic fracturing is required for injection of $CO_2$, because mean porosity of the sedimetary rock in the area is only 1.47%.

HAZOP Study for Risk Assessment and Safety Improvement Strategies of CO2 Separation Process (HAZOP 기법을 이용한 이산화탄소 분리 공정 위험성 평가 및 안전도 향상 전략)

  • You, Chanhee;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.335-342
    • /
    • 2018
  • Various technologies to cope with the energy and environmental issues related to the chemical and electric power industry are in development and demonstration stage. Especially, the absorption process of carbon dioxide ($CO_2$) using amine solution is a key technology of the $CO_2$ capture and storage (CCS). In this study, we identify the major risk factors and suggest strategies for safety improvement by analyzing and assessing commercial the amine-based $CO_2$ separation process. HAZOP method was used to assess the risk for the process. We provide facilities and operational strategies to mitigate or eliminate major risk factors by assessing the relative ranks of identified risk factors using a risk matrix.