DOI QR코드

DOI QR Code

HAZOP Study for Risk Assessment and Safety Improvement Strategies of CO2 Separation Process

HAZOP 기법을 이용한 이산화탄소 분리 공정 위험성 평가 및 안전도 향상 전략

  • You, Chanhee (Department of Energy & Chemical Engineering, Incheon National University) ;
  • Kim, Jiyong (Department of Energy & Chemical Engineering, Incheon National University)
  • 유찬희 (인천대학교 에너지화학공학과) ;
  • 김지용 (인천대학교 에너지화학공학과)
  • Received : 2018.02.19
  • Accepted : 2018.05.08
  • Published : 2018.06.01

Abstract

Various technologies to cope with the energy and environmental issues related to the chemical and electric power industry are in development and demonstration stage. Especially, the absorption process of carbon dioxide ($CO_2$) using amine solution is a key technology of the $CO_2$ capture and storage (CCS). In this study, we identify the major risk factors and suggest strategies for safety improvement by analyzing and assessing commercial the amine-based $CO_2$ separation process. HAZOP method was used to assess the risk for the process. We provide facilities and operational strategies to mitigate or eliminate major risk factors by assessing the relative ranks of identified risk factors using a risk matrix.

화학 및 전력 산업 관련 에너지 및 환경 현안에 대응하기 위한 다양한 기술이 개발 및 실증화 단계에 있으며, 특히 아민을 이용한 이산화탄소($CO_2$) 분리 공정은 $CO_2$ 포집 및 격리(CCS; carbon capture and sequestration) 설비의 대표적인 핵심 기술이다. 본 연구에서는 상용화 중인 아민 기반 $CO_2$ 분리 공정 분석 및 검토를 통하여 주요 위험 요소를 규명하고 안전성 향상을 위한 전략을 제시한다. 대상 공정에 대한 위험성 평가를 하기 위해 HAZOP 기법을 이용하였으며, 위험 등급 표(Risk matrix)을 이용하여 규명된 위험 요소들의 상대적 순위를 평가함으로써 주요 위험 요소를 완화시키거나 제거할 수 있는 설비 및 운전 상의 전략을 제시한다. 위험성 평가 결과로 운전자의 오작동, 부식에 의한 파열, 배관 및 펌프의 고장 등이 주요 위험 요소로 규명 되었고, 완화 전략으로 누출/화재/폭발에 대한 시나리오 규명, 운전자의 관리 및 교육, PSV 등 안전 밸브 설치 등 장치 변경 및 유지 보수 계획 등을 제시하였다.

Keywords

References

  1. Velmurugan, V. and Srithar, K., "Performance Analysis of Solar Stills Based on Various Factors Affecting the Productivity-a Review," Renewable and Sustainable Energy Reviews, 15(2), 1294-1304(2011). https://doi.org/10.1016/j.rser.2010.10.012
  2. Jin, H., Gao, L., Han, W. and Hong, H., "Prospect Options of $CO_2$ Capture Technology Suitable for China," Energy, 35(11), 4499-4506(2010). https://doi.org/10.1016/j.energy.2009.05.031
  3. Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T., Zhang, Y. and Li, A., "Evaluation of Flocculation Induced by pH Increase for Harvesting Microalgae and Reuse of Flocculated Medium," Bioresour. Technol., 110, 496-502(2012). https://doi.org/10.1016/j.biortech.2012.01.101
  4. Wang, L., Liu, Z., Li, P., Yu, J. and Rodrigues, A. E., "Experimental and Modeling Investigation on Post-combustion Carbon Dioxide Capture Using Zeolite 13X-APG by Hybrid VTSA Process," Chem. Eng. J., 197, 151-161(2012). https://doi.org/10.1016/j.cej.2012.05.017
  5. Mulgundmath V., Tezel F., Saatcioglu T. and Golden T., "Adsorption and Separation of $CO_2$/$N_2$ and $CO_2$/$CH_4$ by 13X Zeolite," The Canadian Journal of Chemical Engineering, 90(3), 730-738(2012). https://doi.org/10.1002/cjce.20592
  6. He, B., Song, Q., Yao, Q., Meng, Z. and Chen, C., "Influences of A-or B-site Substitution on the Activity of $CH_3$ Perovskite-type Catalyst in Oxidation of Diesel Particle," Korean Journal of Chemical Engineering, 24(3), 503-507(2007). https://doi.org/10.1007/s11814-007-0088-5
  7. Raynal, L., Bouillon, P., Gomez, A. and Broutin, P., "From MEA to Demixing Solvents and Future Steps, a Roadmap for Lowering the Cost of Post-combustion Carbon Capture," Chem. Eng. J., 171(3), 742-752(2011). https://doi.org/10.1016/j.cej.2011.01.008
  8. Hongjun, Y., Shuanshi, F., Xuemei, L., Yanhong, W. and Jianghua, N., "Economic Comparison of Three Gas Separation Technologies for $CO_2$ Capture from Power Plant Flue Gas," Chin. J. Chem. Eng., 19(4), 615-620(2011). https://doi.org/10.1016/S1004-9541(11)60031-1
  9. Ho, M. T., Allinson, G. W. and Wiley, D. E., "Reducing the Cost of $CO_2$ Capture from Flue Gases Using Pressure Swing Adsorption," Ind. Eng. Chem. Res., 47(14), 4883-4890(2008). https://doi.org/10.1021/ie070831e
  10. Hussain, A. and Hagg, M., "A Feasibility Study of $CO_2$ Capture from Flue Gas by a Facilitated Transport Membrane," J. Membr. Sci., 359(1), 140-148(2010). https://doi.org/10.1016/j.memsci.2009.11.035
  11. Oh, S., Binns, M., Cho, H. and Kim, J., "Energy Minimization of MEA-based $CO_2$ Capture Process," Appl. Energy, 169, 353-362 (2016). https://doi.org/10.1016/j.apenergy.2016.02.046
  12. IEA, C., "Capture and Storage-A Key Carbon Abatement Option," International Energy Agency, OECD, Paris, (2008).
  13. Rochelle, G. T., "Amine Scrubbing for $CO_2$ Capture," Science, 325(5948), 1652-1654(2009). https://doi.org/10.1126/science.1176731
  14. Badr, S., Frutiger, J., Hungerbuehler, K. and Papadokonstantakis, S., "A Framework for the Environmental, Health and Safety Hazard Assessment for Amine-based Post Combustion $CO_2$ Capture," International Journal of Greenhouse Gas Control, 56, 202-220(2017). https://doi.org/10.1016/j.ijggc.2016.11.013
  15. Karl, M., Wright, R. F., Berglen, T. F. and Denby, B., "Worst Case Scenario Study to Assess the Environmental Impact of Amine Emissions from a $CO_2$ Capture Plant," International Journal of Greenhouse Gas Control, 5(3), 439-447(2011). https://doi.org/10.1016/j.ijggc.2010.11.001
  16. Koornneef, J., Ramirez, A., Turkenburg, W. and Faaij, A., "The Environmental Impact and Risk Assessment of $CO_2$ Capture, Transport and Storage-an Evaluation of the Knowledge Base," Progress in Energy and Combustion Science, 38(1), 62-86(2012). https://doi.org/10.1016/j.pecs.2011.05.002
  17. Krzemien, A., Wieckol-Ryk, A., Smolinski, A., Koteras, A. and Wieclaw-Solny, L., "Assessing the Risk of Corrosion in Amine- based $CO_2$ Capture Process," J. Loss. Prev. Process Ind., 43, 189-197(2016). https://doi.org/10.1016/j.jlp.2016.05.020
  18. Krzemien, A., Wieckol-Ryk, A., Duda, A. and Koteras, A., "Risk Assessment of a Post-combustion and Amine-based $CO_2$ Capture Ready Process," Journal of Sustainable Mining, 12(4), 18-23(2013). https://doi.org/10.7424/jsm130404
  19. AICHE Guidelines for Hazard Evaluation Procedures: Center for Chemical Process Safety, American Institute of Chemical Engineers, New York, 1985.
  20. Korea Gas Safety Corporation, "Qualitative Risk Assessment," Korea Association of Professional Safety Engineers, Seoul, 1999.
  21. Freeman, R. A., "Documentation of Hazard and Operability Studies," Process Saf. Prog., 10(3), 155-158(1991).
  22. CCPS, "Guideline for Process Equipment Reliability Data with Data Tables," AIChE, New York (1989).
  23. Guide, K., "Risk and HAZOP," (2006).