• Title/Summary/Keyword: 이산화탄소 가스화

Search Result 326, Processing Time 0.027 seconds

Analysis of Efficiency Enhancement of the Integrated Gasification Combined Cycle with Oxy-Combustion Carbon Capture by Changing the Oxygen Supply System (순산소연소 이산화탄소 포집을 적용한 석탄가스화 복합화력 발전시스템에서 산소공급방식 변경에 의한 효율향상 분석)

  • CHO, YEON WOO;AHN, JI HO;KIM, TONG SEOP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.347-355
    • /
    • 2019
  • As a solution to the growing concern on the global warming, researches are being actively carried out to apply carbon dioxide capture and storage technology to power generation systems. In this study, the integrated gasification combined cycle (IGCC) adopting oxy-combustion carbon capture was modeled and the effect of replacing the conventional air separation unit (ASU) with the ion transport membrane (ITM) on the net system efficiency was analyzed. The ITM-based system was predicted to consume less net auxiliary power owing to an additional nitrogen expander. Even with a regular pressure ratio which is 21, the ITM-based system would provide a higher net efficiency than the optimized ASU-based system which should be designed with a very high pressure ratio around 90. The optimal net efficiency of the ITM-based system is more than 3% higher than that of the ASU-based system. The influence of the operating pressure and temperature of the ITM on system efficiency was predicted to be marginal.

Estimation of non-CO2 Greenhouse Gases Emissions from Biomass Burning in the Samcheok Large-Fire Area Using Landsat TM Imagery (Landsat TM 영상자료를 활용한 삼척 대형산불 피해지의 비이산화탄소 온실가스 배출량 추정)

  • Won, Myoung-Soo;Koo, Kyo-Sang;Lee, Myung-Bo;Son, Yeong-Mo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • This study was performed to estimate non-$CO_2$ greenhouse gases (i.e., GHGs) emission from biomass burning at a local scale. Estimation of non-$CO_2$ GHGs emission was conducted using Landsat TM satellite imagery in order to assess the damage degree in burnt area and its effect on non-$CO_2$ GHGs emission. This approach of estimation was based on the protocol of the 2003 IPCC Guidelines. In this study, we used one of the most severe fire cases occurred Samcheock in April, 2004. Landsat TM satellite imageries of pre- and post-fire were used 1) to calculate delta normalized burn ratio (dNBR) for analyzing burnt area and burn severity of the Samcheok large-fire and 2) to quantify non-$CO_2$ GHGs emission from different size of the burnt area and the damage degree. The analysis of dNBR of the Samcheok large-fire indicated that the total burnt area was 16,200ha and the size of the burnt area differed with the burn severity: out of the total burnt area, the burn severities of Low (dNBR < 152), Moderate (dNBR = 153-190), and High (dNBR = 191-255) were 35%, 33%, and 32%, respectively. It was estimated that the burnt areas of coniferous forest, deciduous forest, and mixed forest were about 11,506ha (77%), 453ha (3%), and 2,978ha (20%), respectively. The magnitude of non-$CO_2$ GHGs emissions from the Samcheok large-fire differed significantly, showing 93% of CO (44.100Gg), 6.4% of CH4 (3.053Gg), 0.5% of $NO_x$ (0.238Gg), and 0.1% of $N_2O$ (0.038Gg). Although there were little changes in the total burnt area by the burn severity, there were differences in the emission of non-$CO_2$ GHGs with the degree of the burn severity. The maximum emission of non-$CO_2$ GHGs occurred in moderate burn severity, indicating 47% of the total emission.

Gas Hydrate Production Using Porous Material (다공질 물질을 이용한 가스 하이드레이트 제조기술)

  • Kang, Seong-Pil;Seo, Yu-Taek;Chang, Won-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.595-596
    • /
    • 2008
  • 가스 하이드레이트의 생성속도와 전환율을 높이며, 동시에 생성유도시간을 억제하기 위한 방법으로 다공질 물질을 활용하여 공극 내에 물을 함침시킨 후 가스와 반응시키는 제조방법을 개발하였다. 내용적 10 L 의 대용량 고압 반응기를 제작하여 실험을 수행하였으며, 장치 대형화에 따른 다공질 실리카겔의 다짐현상에 의한 발열제어 등에 대한 문제점은 특별히 나타나지는 않았다. 하이드레이트 형성을 위한 구동력이 높을수록 생성속도가 좋아지는 것을 확인하였다. 일반 벌크상 하이드레이트 제조법과 비교하여 매우 높은 생성속도 및 전환율, 거의 제거된 생성유도시간 등은 응용기술로 활용하기에 매우 바람직한 특성으로써 선택적인 가스분리, 가스저장 매체로 활용이 가능하다.

  • PDF

Effect of Packaging Material on Quality of Kimchi During Storage (포장재질이 김치의 품질변화에 미치는 영향)

  • Kim, Yun-Ji;Hong, Seok-In;Park, Noh-Hyun;Chung, Tae-Yon
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.62-67
    • /
    • 1994
  • Quality change of Kimchi packaged with Ny/PE, Ny/CPP (PPtray+Ny/CPP cover), Cryovac BK-1, BK-4, and PET/Al/PE film was observed during storage at $5^{\circ}C$ (97%RH) and $20^{\circ}C$ (76%RH). To evaluate quality change of Kimchi, gas composition of package, pH, acidity, color, growth of lactic acid bacteria, and sensory score were measured periodically. Regarding to gas composition of package, Kimchi packaged with PET/Al/PE showed higher oxygen concentration at the beginning of storage than the others; carbon dioxide concentration was almost 100% at the end of storage. Carbon dioxide concentration of Kimchi packaged with Cryovac BK-1 and BK-4 which has higher gas permeability than the others, was increased to a maximum and then decreased due to permeation of gas during storage; oxygen concentration was increased. Unlike Kimchi packaged with Ny/PE, Ny/CPP, and PET/Al/PE, package swelling was not observed in Kimchi packaged with Cryovac BK-1 and BK-4 during storage. Although pH change was not significant depending on the packaging material, Kimchi packaged with Cryovac BK-1 and BK-4 showed lower pH value and higher acidity than those of the others. Color change of Kimchi was different depending on the packaging material during storage. Difference of the growth of lactic acid bacteria and sensory evaluation were not significant among Kimchi packaged with different packaging material during storage at either temperature. In conclusion, the effect of packaging materials on the quality change of Kimchi was not significant; however, to prevent from swelling of packaged Kimchi which is one of the most serious problem during storage and distribution, might be avoided by using relatively high $CO_2$ permeable film than high gas barrier film.

  • PDF

Development of a Methanol Absorption System for the Removal of $H_2S$, COS, $CO_2$ in Syngas from Biomass Gasifier (바이오매스 가스화 내의 $H_2S$, COS, $CO_2$ 복합 제거를 위한 메탄올 흡수탑 개발)

  • Eom, Won Hyun;Kim, Jae Ho;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.23-27
    • /
    • 2012
  • To make synthetic liquid fuel from biomass such as wood pellet, energy crop and so on, a biomass to liquid (BTL) process by using a biomass gasifier with Fisher-Tropsch (FT) reaction was developed. However $H_2S$, COS and $CO_2$ in syngas from biomass gasifiers resulted in a decrease of the conversion efficiency and the deactivation of the catalyst. To remove acid gases in syngas, a lab-scale methanol absorption tower was developed and the removal characteristics of acid gases were investigated. The methanol absorption tower efficiently removed $H_2S$ and COS with a removal of $CO_2$, so it could be useful process for the BTL process.

Electrochemical Conversion of Carbon Dioxide (이산화탄소의 전기화학적 변환)

  • Song, Ji-Eun;Shin, Woon-Sup
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.131-141
    • /
    • 2009
  • The conversion of carbon dioxide to value-added compounds has been attracted to solve the environmental problems due to the climate change caused by greenhouse effect in addition to recycle the abundant and renewable carbon source. For utilizing carbon dioxide to useful compounds, the development of catalysts and optimization of experimental conditions are indispensable since carbon dioxide is the most stable one among carbon compounds and the a certain amount of energy is required for the carbon dioxide conversion. The technologies developed for the electrochemical carbon dioxide conversion were reviewed in terms of electrocatalyst which can be electrode material, inorganic complex, and enzyme. This field should be developed further since no good catalyst having selectivity, efficiency, and stability all together.

국내의 $CO_2$ 냉매 적응 냉난방시스템 기술 개발 동향

  • 김만회;우정태
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.31 no.7
    • /
    • pp.29-31
    • /
    • 2002
  • 생활수준의 향상과 산업의 고도화로 에어컨의 수요가 지속적으로 증가하고 있다. 표 1에 나타낸 바와 같이 2001년의 세계 에어컨 (가정용 및 패키지 에어컨) 수요량은 약 4000만대로 전체 생산 및 수요의 80% 이상을 아시아(중국, 일본, 한국)와 미국이 차 지하고 있다. 국내업체의 2001년의 국내외 총 에어컨 생산량도 700만대 정도로 전 세계 수요의 약 15% 이상을 점하고 있는데, 에어컨의 냉매에 의한 환경문제가 중요한 사안으로 대두되고 있다. 에어컨의 냉매로 사용되고 있는 HCFC계 (R22) 냉매의 대채냉매로 사용중인 HFC계 냉매도 지구온난화지수가 높으며, 1997년 채택된 교토 의정서에서 대기 배출가스 억제 물질로 분류되었다. 따라서, HFC물질을 사용하는 경우 제품 폐기시 냉매를 회수해야 하는 문제를 가지고 있어서 자연냉매의 사용에 대한 관심이 높아지고 있다. 이산화탄소도 자연냉매의 하나로 선진국을 중심으로 이산화탄소에 대한 이용기술 개발이 활발히 진행되고 있으며, 선진국에서는 이산화탄소 냉매를 적용한 급탕기와 같은 일부 상품이 출하되고 있다. 그러나, 이산화탄소 냉매를 이용한 냉난방시스템에 대해서는 선진국에서도 현재 실험실 차원의 시작품을 제작하여 성능과 신뢰성 향상을 위한 연구가 진행되고 있는 단계이며, 실용화를 위해서는 해결되어야 할 여러 가지 문제점들이 남아 있는 것으로 알려져 있다. 본 글에서는 산업자원부의 차세대신기술개발사의 일환으로 지원되고 있는 이산화탄소 냉매를 이용한 냉난방시스템의 개발 과제에 대해 간단히 소개하기로 한다.

  • PDF

Geochemical Concept and Technical Development of Geological $CO_2$ Sequestration for Reduction of $CO_2$ (이산화탄소 저감을 위한 지중처분기술의 지구화학적 개념과 연구개발 동향)

  • Chae, Gi-Tak;Yun, Seong-Taek;Choi, Byoug-Youg;Kim, Kang-Joo;Shevalier, M.
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.1-22
    • /
    • 2005
  • Carbon dioxide ($CO_2$) is the greatest contributor among the major greenhouse gases covered by the Kyoto Protocol. Therefore, substantial efforts for the control and reduction of $CO_2$ emissions, including increased efficiency of fossil fuel energy usage, development of energy sources with lower carbon content, and increased reliability on alternative energy sources, are being performed worldwide. However, development and industrial application of $CO_2$ sequestration techniques are needed to meet the requirements of the Kyoto Protocol. Among the $CO_2$ sequestration methods developed, geological sequestration methods such as the storage in deep aquifers, deep coal seams and oil and gas reservoirs and the mineral carbonation is considered most favorable because of its stability and environmental effectiveness. In this review, geochemical concepts and technologic development of geologic sequestration technology, especially the storage in deep aquifers and the mineral carbonation, are discussed. The weakness and strengths for each of geologic sequestration methods, are also reviewed.

A Study on the Reaction Characteristics of Carbon Dioxide Methanation Catalyst for Full-Scale Process Application (이산화탄소 메탄화 공정 적용을 위한 Ni/CeO2-X 촉매의 반응 특성 연구)

  • Lee, Ye Hwan;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.323-327
    • /
    • 2020
  • The reaction characteristics of Ni/CeO2-X which is highly efficient at a low temperature was investigated for an application to carbon dioxide methanation process. The CeO2-X support was obtained by the heat treatment of Ce(NO3)3 at 400 ℃ and the catalyst was prepared by impregnation process. The operating parameters of the experiment were the internal pressure of the reactor, the composition of oxygen, methane, and hydrogen sulfide in the inlet gas and the reaction temperature. When Ni/CeO2-X was used for the carbon dioxide methanation reaction, the CO2 conversion rate increased by more than 25% as the pressure increased from 1 to 3 bar. The increase was large at a low reaction temperature. When both oxygen and methane were in the inlet gas, the CO2 conversion rate of the catalyst decreased by up to 16 and 4%, respectively. As the concentration of oxygen and methane increased, the reduction rate of the CO2 conversion rate tended to increase. In addition, the hydrogen sulfide in the inlet gas reduced the CO2 conversion rate by up to 7% and caused catalyst deactivation. The results of this study will be useful as basic data for the carbon dioxide methanation process.

Minimization of Carbon Monoxide in the High Efficient Catalytic Shift for Fuel Cell Applications (연료전지용 고효율 촉매전이 반응의 일산화탄소 저감)

  • Park, Heon;Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.528-532
    • /
    • 2007
  • The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$(steam) followed by water gas shift(WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift(HTS) and a low temperature shift(LTS). In the WGS operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about $3\sim4%$ followed to about 0.5% via a low temperature shift catalyst. The WGS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to less than 0.5%.