회귀분석에서 이분산이 발생할 경우 표준적 추정절차에 따른 결과는 유효하지 않게 되므로 이를 확인하는 것이 필요하다. 이분산 문제와 더불어 이상치가 함께 존재하면 이분산에 관한 진단은 왜곡될 수 있다. 이상치가 존재할 때 이분산을 진단하는 기존의 방법들은 강건통계량을 이용하거나 이상치를 제거하는 접근법을 사용한다. 이분산 문제에서 이상치를 탐지하기 위하여 여러 가지 접근법이 제시되었다. 본 연구에서는 이분산 진단과정에서 이상치를 배제하기 위하여 기존의 이분산 검정과정에 순차적 이상치 탐지법을 적용하는 절차를 제시한다. 제시된 방법은 모의실험 및 예제를 통해 기존의 검정방법과 검정력을 비교한다.
증권의 가격형성에 유리한 뉴스와 불리한 뉴스가 도착할 때 이 뉴스가 주가의 변동성에 미치는 영향의 정도는 차이가 있다. 불리한 뉴스가 변동성에 미치는 영향도가 유리한 뉴스가 변동성에 미치는 영향도보다 크다. 따라서 불리한 뉴스가 발생할 때 형성되는 변동성의 양이 유리한 뉴스의 도착시보다 크다. 그리고 충격의 크기에 따라 이 충격이 야기하는 변동성의 양의 크기에도 차이가 존재한다. 일반 자기회귀 조건부 이분산 과정은 유리한 뉴스와 불리한 뉴스를 대칭적으로 반영하고 있다. 이 뉴스들을 비대칭적으로 포착하는 자기회귀 조건부 이분산 과정의 모형들을 실증적으로 분석하였다. 뉴스의 비대칭성과 규모를 적절히 포착하고 있는 모형들이 비선형 일반 자기회귀 조건부 이분산 과정, 지수 일반 자기회귀 조건부 이분산 과정과 정보 포착 자기회귀 조건부 이분간 과정임이 발견되었다. 이 중 비선형 일반 자기회귀 조건부 이분산 과정이 가장 좋은 모형으로 보인다. 비선형 일반 자기회귀 조건부 이분산 과정의 경우 예측오차의 승멱(power)이 약 1.5이다. 따라서 일반 자기회귀 조건부 이분산 과정의 예측오차의 승멱인 2에 비하여 작다. 이 사실은 일반 자기회귀 조건부 이분산의 예측오차의 승멱이 과도하게 측정되고 없음을 알 수 있다. 뉴스의 비대칭성과 규모를 반영하고 있는 모형들은 한결같이 예측오차의 크기에 적절한 가중치를 부여하여 예측오차의 크기를 조정하고 있다. 이 모형의 성질과 실증분석의 결과에 의하여 예측오차의 승멱은 2 이하로 수정하여 사용해야 한다는 점이 시사되고 있다. 음의 충격이 양의 충격보다 주가의 변동성을 크게 하고 없음이 발견되었다. 주가형성에 유리한 뉴스와 불리한 뉴스가 주가의 변동성에 미치는 영향의 차이와 충격의 중대성을 양으로 표시하는 규모의 차이를 반영해주는 변수들의 추정된 계수가 미국과 일본보다 절대값에 있어서 상당히 작다. 이 현상은 뉴스의 비대칭성과 규모보다는 발생하는 충격, 즉 뉴스 자체에 보다 민감하게 반응하고 있음을 보여주고 있다. 물론 투자자들이 뉴스의 비대칭성과 규모를 완전히 무시하고 투자활동을 전개하고 있다는 것을 의미하는 것은 아니다.
Journal of the Korean Data and Information Science Society
/
제20권3호
/
pp.475-483
/
2009
본 연구에서는 한국종합주가지수 데이터를 이용하여 다양한 비선형 시계열 모형들을 소개하였다. 조건부 평균의 선형 모형으로는 상수항 모형, 자기회귀 모형을 살펴보았으며, 비선형 모형으로는 분계점 자기회귀 모형, 지수적 자기회귀 모형을 살펴보았다. 조건부 분산 모형으로는 일반 자기회귀 이분산 모형과 지수적 일반 자기회귀 이분산 모형, Glosten 등 (1993)의 모형 그리고 일반화 이항멱변환 분계점 일반 자기회귀 이분산 모형을 살펴보았다. 한편, 일반화 이항멱변환 분계점 일반 자기회귀 이분산 모형은 대표적 비대칭성 이분산성 모형인 Zakoian (1993) 모형과 Li와 Li (1996) 모형을 효과적으로 통합할 수 있는 변형된 모형이다. 본 연구에서는, 한국종합주가지수 데이터를 분석하여 새로운 모형의 효율성을 증명하였다.
Journal of the Korean Data and Information Science Society
/
제21권5호
/
pp.831-839
/
2010
최소제곱 서포트벡터기계는 비선형회귀분석과 분류에 널리 쓰이는 커널기법이다. 본 논문에서는 금융시계열자료의 평균 및 변동성을 추정하기 위하여 평균의 추정 방법으로는 가중최소제곱 서포트벡터기계, 변동성의 추정 방법으로는 최소제곱 서포트벡터기계를 사용하는 비선형 평균 일반화 이분산 자기회귀모형을 제안한다. 제안된 모형은 선형 일반화 이분산 자기회귀모형 및 선형 평균 일반화 이분산 자기회귀모형보다 더 나은 추정 능력을 가진다는 것을 실제자료의 추정을 통하여 보였다.
Journal of the Korean Data and Information Science Society
/
제21권6호
/
pp.1041-1049
/
2010
한국프로야구에서 관중수는 프로야구 발전을 위한 가장 큰 수입원이며 프로야구팀의 관심사이므로 수요예측 모형이 있다면 프로야구구단들은 관중유치 전략을 세우는데 도움이 될 것이다. 이러한 이유로 본 연구에서는 한국프로야구 관중수를 예측하는 모형을 제안하고자 하며 제한된 여건 속에서 관중수에 영향을 미치는 이용 가능한 대부분의 변수들을 고려하였다. 종속변수는 로그관중수로 두고 다양한 독립변수와 오차항의 분산을 등분산, 조건부 이분산을 가정한 여러 가지 일반화 자기회귀 모형, 오차항의 분포가 t분포를 따른다는 가정을 이용한 일반화 자기회귀 조건부 이분산 모형들을 서로 비교하였는데, 그 결과 고려된 모형 중에서는 t분포를 가정한 일반화 자기회귀 조건부 이분산 모형이 가장 예측력이 뛰어났다.
종래에는 등분산 가정을 기반으로 가속열화시험 데이터로부터 저장수명을 예측하는 방식이 일반적이었다. 그러나, 실제로는 대부분의 탄약류의 특성치 데이터는 시간의 경과에 따라 산포가 증가한다. 따라서, 본 연구에서는 등분산과 이분산을 가정한 경우에 저장수명 예측 결과의 차이를 확인하고 향후 이분산 가정을 기반으로 데이터 분석을 수행함이 타당함을 제안한다.
로짓모형은 선택대안에 대한 확률 계산이 용이하고, 설명변수의 파라메타 추정이 용이하기 때문에 교통 수단 선택모형으로 널리 쓰여지고 있다. 그러나 이러한 로짓모형은 수단선택 효용함수의 오차항 분포가 선택 대안간에 독립적이고, 그 분산이 동일하다는(IID:Independent and Identically Distributed)가정을 내포한다. 본 연구는 수단선택 효용오차의 분산이 수단간에 동일하다는 가정을 완화시키는 이분산 로짓모형 추정에 관한 연구이다. 수단선택 효용오차항의 동분산성을 극복함으로써 보다 현실적인 통행자의 수단선택행태를 반영하는 로짓모형을 추정하는데 본 연구의 목적이 있다. 이를 위해 로짓모형 오차항의 분산과 직접적인 관련이 있는 규모인자(scale factor)를 도입하였다. 이는 대중 교통과 승용차의 통행시간차이에 따른 이분산성을 고려하도록 정의되었으며, 이를 통행시간 파라메타 추정에 활용하였다. 본 연구에서 개발된 이분산 로짓모형의 추정 결과. 통행자의 통행시간이 증가하면서 대중교통수단과 승용차의 통행시간차이가 동일하더라도 통행자의 대중교통 수단선택확률이 차이를 보임으로 현실적인 통행자의 수단선택 행태를 반영하는 것으로 판명되었다.
자본시장에서 자산가격결정이론의 대부분은 투자자산의 기대수익률과 변동성이 시간의 흐름에 따라 일정한 것으로 가정하여 왔다. 그러나 최근의 연구 성과에 의하면 주식수익률의 변동성이 동분산이라기 보다는 이분산일 가능성이 높다는 것이다. 1982년 Engle에 의하여 개발된 자기회귀 조건부 이분산모형(ARCH)이 제시된 이래 ARCH형태의 모형개발이 계속 이루어져 왔다. 본 논문은 ARCH형태의 이분산모형 가운데서 EGARCH모형을 이용하여 위험프레미엄과 조건부 이분산과의 관계와 더불어 기대하지 않은 수익률변화와 변동성과의 관계를 규명하고자 노력하였다. 1980년에서 1994년까지의 주가자료를 전체기간과 세부기간(4기간)으로 분류하여 기술 통계량 분석을 행하고, 종합주가지수초과수익률, 동일 가치 가중지수초과수익률, 대형주 주가지수초과수익률, 소형주 주가지수초과수익률에 대하여 EGARCH모형 을 적용하여 실증분석 하였다. 그 결과 위험프레미엄과 조건부 이분산은 시간이 지남에 따라 일정한 관계를 보여주지 못하고 있어 투자자의 위험회피도(危險回避度)가 변화함을 보여주었다. 기대하지 않은 수익률변화와 변동성 관계에서는 기대하지 않은 음(陰)(-)의 주식수익률이 기대하지 않은 양(陽)(+)의 주식수익률보다 상대적으로 더 큰 변동성을 가져오는 것으로 보여 우리나라 주식시장에서 주식수익률의 변동성 정보의 비대칭 반응효과가 존재하는 것으로 나타났다.
Communications for Statistical Applications and Methods
/
제16권2호
/
pp.287-297
/
2009
일반적으로 일반화 자기회귀 조건부 이분산(GARCH)모형 하에서, 우도함수에 기반한 자료의 예측구간의 추정은 오차항의 분포에 민감하게 반응하고 더욱이 조건부분산의 경우 구간추정이 현실적으로 쉽게 풀리지 않는 문제이다. 이를 해결하기 위해 붓스트랩방법(bootstrap method)이 적용될 수 있음을 최근 연구들을 통해 밝혀졌다. 본 논문에서는 GARCH모형 하에서 자료와 변동성(조건부 분산)의 예측구간 추정을 위해 최근 소개된 Pascual 등 (2006)의 논문을 토대로 붓스트랩 방법를 정리하였다 실제 사례분석을 위해 국내 주가수익률자료를 이용하였다.
본 연구는 한국증권시장에서 변동성의 정보비대칭효과를 조건부 이분산모형을 이용하여 검증하고자 하였다. 검증방법으로는 Engle과 Ng (1993)의 연구에 기초하여 정보반응곡선(News impact curve)으로 분석하였다. 분석자료로 1980년 부터 1995년 까지의 한국종합주가지수, 일별 초과수익률자료를 사용하였다. 정보반응곡선에 이용한 모형은 GARCH 모형, EGARCH 모형, TGARCH 모형, AGARCH 모형등 4개의 조건부 이분산 모형이다. 무조건 분산을 이용한 정보 반응곡선의 함수형태로 보면, 분산의 정보반응에 있어서 GARCH 모형은 대칭적으로 반응하며 나머지 조건부 이분산 모형인 EGARCH 모형, TGARCH 모형, 그리고 AGARCH 모형은 비대칭적으로 반응하는 모형임을 알 수 있었다. 실증분석결과 정보반응곡선을 통하여 악재(bad news)정보에 따라 예측하지 못한 주식수익률의 하락이 호재(good news)에 따른 예측하지 못한 주식수익률의 상승보다 더 큰 변동성을 발견할 수 있었다. 그러나 비대칭성의 크기는 그다지 큰 것으로 보이지 않았다. 모형적합성 검정에서도 4개의 조건부 이분산 모형은 모두 적합한 것으로 보인다. 그중에서도 EGARCH 모형과 TGARCH 모형이 상대적으로 주가예측력이 뛰어나 보인다. 그러나 변동성의 정보 비대칭반응을 통계적으로 유의적인 것으로 확인한 모형은 TGARCH모형 뿐이었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.