• 제목/요약/키워드: 이분산

검색결과 80건 처리시간 0.028초

이상치 탐지법을 이용한 강건 이분산 검정 (Robust tests for heteroscedasticity using outlier detection methods)

  • 서한손;윤민
    • 응용통계연구
    • /
    • 제29권3호
    • /
    • pp.399-408
    • /
    • 2016
  • 회귀분석에서 이분산이 발생할 경우 표준적 추정절차에 따른 결과는 유효하지 않게 되므로 이를 확인하는 것이 필요하다. 이분산 문제와 더불어 이상치가 함께 존재하면 이분산에 관한 진단은 왜곡될 수 있다. 이상치가 존재할 때 이분산을 진단하는 기존의 방법들은 강건통계량을 이용하거나 이상치를 제거하는 접근법을 사용한다. 이분산 문제에서 이상치를 탐지하기 위하여 여러 가지 접근법이 제시되었다. 본 연구에서는 이분산 진단과정에서 이상치를 배제하기 위하여 기존의 이분산 검정과정에 순차적 이상치 탐지법을 적용하는 절차를 제시한다. 제시된 방법은 모의실험 및 예제를 통해 기존의 검정방법과 검정력을 비교한다.

정보(情報)의 발생(發生)과 주가(株價)의 변동성(變動性) (Information Arrival and Stock Market Volatility Dynamics)

  • 이일균
    • 재무관리연구
    • /
    • 제16권2호
    • /
    • pp.285-308
    • /
    • 1999
  • 증권의 가격형성에 유리한 뉴스와 불리한 뉴스가 도착할 때 이 뉴스가 주가의 변동성에 미치는 영향의 정도는 차이가 있다. 불리한 뉴스가 변동성에 미치는 영향도가 유리한 뉴스가 변동성에 미치는 영향도보다 크다. 따라서 불리한 뉴스가 발생할 때 형성되는 변동성의 양이 유리한 뉴스의 도착시보다 크다. 그리고 충격의 크기에 따라 이 충격이 야기하는 변동성의 양의 크기에도 차이가 존재한다. 일반 자기회귀 조건부 이분산 과정은 유리한 뉴스와 불리한 뉴스를 대칭적으로 반영하고 있다. 이 뉴스들을 비대칭적으로 포착하는 자기회귀 조건부 이분산 과정의 모형들을 실증적으로 분석하였다. 뉴스의 비대칭성과 규모를 적절히 포착하고 있는 모형들이 비선형 일반 자기회귀 조건부 이분산 과정, 지수 일반 자기회귀 조건부 이분산 과정과 정보 포착 자기회귀 조건부 이분간 과정임이 발견되었다. 이 중 비선형 일반 자기회귀 조건부 이분산 과정이 가장 좋은 모형으로 보인다. 비선형 일반 자기회귀 조건부 이분산 과정의 경우 예측오차의 승멱(power)이 약 1.5이다. 따라서 일반 자기회귀 조건부 이분산 과정의 예측오차의 승멱인 2에 비하여 작다. 이 사실은 일반 자기회귀 조건부 이분산의 예측오차의 승멱이 과도하게 측정되고 없음을 알 수 있다. 뉴스의 비대칭성과 규모를 반영하고 있는 모형들은 한결같이 예측오차의 크기에 적절한 가중치를 부여하여 예측오차의 크기를 조정하고 있다. 이 모형의 성질과 실증분석의 결과에 의하여 예측오차의 승멱은 2 이하로 수정하여 사용해야 한다는 점이 시사되고 있다. 음의 충격이 양의 충격보다 주가의 변동성을 크게 하고 없음이 발견되었다. 주가형성에 유리한 뉴스와 불리한 뉴스가 주가의 변동성에 미치는 영향의 차이와 충격의 중대성을 양으로 표시하는 규모의 차이를 반영해주는 변수들의 추정된 계수가 미국과 일본보다 절대값에 있어서 상당히 작다. 이 현상은 뉴스의 비대칭성과 규모보다는 발생하는 충격, 즉 뉴스 자체에 보다 민감하게 반응하고 있음을 보여주고 있다. 물론 투자자들이 뉴스의 비대칭성과 규모를 완전히 무시하고 투자활동을 전개하고 있다는 것을 의미하는 것은 아니다.

  • PDF

일반 자기회귀 이분산 모형을 이용한 시계열 자료 분석 (Analyzing financial time series data using the GARCH model)

  • 김삼용;김진아
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권3호
    • /
    • pp.475-483
    • /
    • 2009
  • 본 연구에서는 한국종합주가지수 데이터를 이용하여 다양한 비선형 시계열 모형들을 소개하였다. 조건부 평균의 선형 모형으로는 상수항 모형, 자기회귀 모형을 살펴보았으며, 비선형 모형으로는 분계점 자기회귀 모형, 지수적 자기회귀 모형을 살펴보았다. 조건부 분산 모형으로는 일반 자기회귀 이분산 모형과 지수적 일반 자기회귀 이분산 모형, Glosten 등 (1993)의 모형 그리고 일반화 이항멱변환 분계점 일반 자기회귀 이분산 모형을 살펴보았다. 한편, 일반화 이항멱변환 분계점 일반 자기회귀 이분산 모형은 대표적 비대칭성 이분산성 모형인 Zakoian (1993) 모형과 Li와 Li (1996) 모형을 효과적으로 통합할 수 있는 변형된 모형이다. 본 연구에서는, 한국종합주가지수 데이터를 분석하여 새로운 모형의 효율성을 증명하였다.

  • PDF

비선형 평균 일반화 이분산 자기회귀모형의 추정 (Estimation of nonlinear GARCH-M model)

  • 심주용;이장택
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.831-839
    • /
    • 2010
  • 최소제곱 서포트벡터기계는 비선형회귀분석과 분류에 널리 쓰이는 커널기법이다. 본 논문에서는 금융시계열자료의 평균 및 변동성을 추정하기 위하여 평균의 추정 방법으로는 가중최소제곱 서포트벡터기계, 변동성의 추정 방법으로는 최소제곱 서포트벡터기계를 사용하는 비선형 평균 일반화 이분산 자기회귀모형을 제안한다. 제안된 모형은 선형 일반화 이분산 자기회귀모형 및 선형 평균 일반화 이분산 자기회귀모형보다 더 나은 추정 능력을 가진다는 것을 실제자료의 추정을 통하여 보였다.

일반화 자기회귀 조건부 이분산 모형을 이용한 한국프로야구 관중수의 예측 (Forecasting attendance in the Korean professional baseball league using GARCH models)

  • 이장택;방소영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권6호
    • /
    • pp.1041-1049
    • /
    • 2010
  • 한국프로야구에서 관중수는 프로야구 발전을 위한 가장 큰 수입원이며 프로야구팀의 관심사이므로 수요예측 모형이 있다면 프로야구구단들은 관중유치 전략을 세우는데 도움이 될 것이다. 이러한 이유로 본 연구에서는 한국프로야구 관중수를 예측하는 모형을 제안하고자 하며 제한된 여건 속에서 관중수에 영향을 미치는 이용 가능한 대부분의 변수들을 고려하였다. 종속변수는 로그관중수로 두고 다양한 독립변수와 오차항의 분산을 등분산, 조건부 이분산을 가정한 여러 가지 일반화 자기회귀 모형, 오차항의 분포가 t분포를 따른다는 가정을 이용한 일반화 자기회귀 조건부 이분산 모형들을 서로 비교하였는데, 그 결과 고려된 모형 중에서는 t분포를 가정한 일반화 자기회귀 조건부 이분산 모형이 가장 예측력이 뛰어났다.

열화데이터의 등분산 가정에 따른 저장수명예측 비교 연구 (Study for comparison of storage lifetimes estimation between constant and time-variant variance of degradation data)

  • 백승준;손영갑;박상현;이문호;강인식
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.154-156
    • /
    • 2017
  • 종래에는 등분산 가정을 기반으로 가속열화시험 데이터로부터 저장수명을 예측하는 방식이 일반적이었다. 그러나, 실제로는 대부분의 탄약류의 특성치 데이터는 시간의 경과에 따라 산포가 증가한다. 따라서, 본 연구에서는 등분산과 이분산을 가정한 경우에 저장수명 예측 결과의 차이를 확인하고 향후 이분산 가정을 기반으로 데이터 분석을 수행함이 타당함을 제안한다.

  • PDF

이분산 로짓모형의 추정과 적용 (Development and Application of the Heteroscedastic Logit Model)

  • 양인석;노정현;김강수
    • 대한교통학회지
    • /
    • 제21권4호
    • /
    • pp.57-66
    • /
    • 2003
  • 로짓모형은 선택대안에 대한 확률 계산이 용이하고, 설명변수의 파라메타 추정이 용이하기 때문에 교통 수단 선택모형으로 널리 쓰여지고 있다. 그러나 이러한 로짓모형은 수단선택 효용함수의 오차항 분포가 선택 대안간에 독립적이고, 그 분산이 동일하다는(IID:Independent and Identically Distributed)가정을 내포한다. 본 연구는 수단선택 효용오차의 분산이 수단간에 동일하다는 가정을 완화시키는 이분산 로짓모형 추정에 관한 연구이다. 수단선택 효용오차항의 동분산성을 극복함으로써 보다 현실적인 통행자의 수단선택행태를 반영하는 로짓모형을 추정하는데 본 연구의 목적이 있다. 이를 위해 로짓모형 오차항의 분산과 직접적인 관련이 있는 규모인자(scale factor)를 도입하였다. 이는 대중 교통과 승용차의 통행시간차이에 따른 이분산성을 고려하도록 정의되었으며, 이를 통행시간 파라메타 추정에 활용하였다. 본 연구에서 개발된 이분산 로짓모형의 추정 결과. 통행자의 통행시간이 증가하면서 대중교통수단과 승용차의 통행시간차이가 동일하더라도 통행자의 대중교통 수단선택확률이 차이를 보임으로 현실적인 통행자의 수단선택 행태를 반영하는 것으로 판명되었다.

EGARCH 모형(模型)을 이용한 주식수익률(株式收益率)의 변동성(變動性) 연구(硏究)

  • 구맹회;이윤선
    • 재무관리연구
    • /
    • 제12권2호
    • /
    • pp.95-120
    • /
    • 1995
  • 자본시장에서 자산가격결정이론의 대부분은 투자자산의 기대수익률과 변동성이 시간의 흐름에 따라 일정한 것으로 가정하여 왔다. 그러나 최근의 연구 성과에 의하면 주식수익률의 변동성이 동분산이라기 보다는 이분산일 가능성이 높다는 것이다. 1982년 Engle에 의하여 개발된 자기회귀 조건부 이분산모형(ARCH)이 제시된 이래 ARCH형태의 모형개발이 계속 이루어져 왔다. 본 논문은 ARCH형태의 이분산모형 가운데서 EGARCH모형을 이용하여 위험프레미엄과 조건부 이분산과의 관계와 더불어 기대하지 않은 수익률변화와 변동성과의 관계를 규명하고자 노력하였다. 1980년에서 1994년까지의 주가자료를 전체기간과 세부기간(4기간)으로 분류하여 기술 통계량 분석을 행하고, 종합주가지수초과수익률, 동일 가치 가중지수초과수익률, 대형주 주가지수초과수익률, 소형주 주가지수초과수익률에 대하여 EGARCH모형 을 적용하여 실증분석 하였다. 그 결과 위험프레미엄과 조건부 이분산은 시간이 지남에 따라 일정한 관계를 보여주지 못하고 있어 투자자의 위험회피도(危險回避度)가 변화함을 보여주었다. 기대하지 않은 수익률변화와 변동성 관계에서는 기대하지 않은 음(陰)(-)의 주식수익률이 기대하지 않은 양(陽)(+)의 주식수익률보다 상대적으로 더 큰 변동성을 가져오는 것으로 보여 우리나라 주식시장에서 주식수익률의 변동성 정보의 비대칭 반응효과가 존재하는 것으로 나타났다.

  • PDF

붓스트랩 방법을 이용한 일반화 자기회귀 조건부 이분산모형에서의 조건부 분산 예측 (Prediction of Conditional Variance under GARCH Model Based on Bootstrap Methods)

  • 김희영;박만식
    • Communications for Statistical Applications and Methods
    • /
    • 제16권2호
    • /
    • pp.287-297
    • /
    • 2009
  • 일반적으로 일반화 자기회귀 조건부 이분산(GARCH)모형 하에서, 우도함수에 기반한 자료의 예측구간의 추정은 오차항의 분포에 민감하게 반응하고 더욱이 조건부분산의 경우 구간추정이 현실적으로 쉽게 풀리지 않는 문제이다. 이를 해결하기 위해 붓스트랩방법(bootstrap method)이 적용될 수 있음을 최근 연구들을 통해 밝혀졌다. 본 논문에서는 GARCH모형 하에서 자료와 변동성(조건부 분산)의 예측구간 추정을 위해 최근 소개된 Pascual 등 (2006)의 논문을 토대로 붓스트랩 방법를 정리하였다 실제 사례분석을 위해 국내 주가수익률자료를 이용하였다.

우리나라 주식수익률(株式收益率)의 변동성(變動性)과 정보비대칭(情報非對稱)에 관한 실증적(實證的) 연구(硏究) - ARCH형태(形態)의 모형(模型)을 중심(中心)으로 -

  • 이윤선
    • 재무관리논총
    • /
    • 제3권2호
    • /
    • pp.157-185
    • /
    • 1996
  • 본 연구는 한국증권시장에서 변동성의 정보비대칭효과를 조건부 이분산모형을 이용하여 검증하고자 하였다. 검증방법으로는 Engle과 Ng (1993)의 연구에 기초하여 정보반응곡선(News impact curve)으로 분석하였다. 분석자료로 1980년 부터 1995년 까지의 한국종합주가지수, 일별 초과수익률자료를 사용하였다. 정보반응곡선에 이용한 모형은 GARCH 모형, EGARCH 모형, TGARCH 모형, AGARCH 모형등 4개의 조건부 이분산 모형이다. 무조건 분산을 이용한 정보 반응곡선의 함수형태로 보면, 분산의 정보반응에 있어서 GARCH 모형은 대칭적으로 반응하며 나머지 조건부 이분산 모형인 EGARCH 모형, TGARCH 모형, 그리고 AGARCH 모형은 비대칭적으로 반응하는 모형임을 알 수 있었다. 실증분석결과 정보반응곡선을 통하여 악재(bad news)정보에 따라 예측하지 못한 주식수익률의 하락이 호재(good news)에 따른 예측하지 못한 주식수익률의 상승보다 더 큰 변동성을 발견할 수 있었다. 그러나 비대칭성의 크기는 그다지 큰 것으로 보이지 않았다. 모형적합성 검정에서도 4개의 조건부 이분산 모형은 모두 적합한 것으로 보인다. 그중에서도 EGARCH 모형과 TGARCH 모형이 상대적으로 주가예측력이 뛰어나 보인다. 그러나 변동성의 정보 비대칭반응을 통계적으로 유의적인 것으로 확인한 모형은 TGARCH모형 뿐이었다.

  • PDF