대부분의 국내 선행연구들은 이분산성은 GARCH모형으로, 꼬리위험은 EVT모형으로 따로 고려하였다. 이 경우 이분산성 및 꼬리의 두꺼움을 동시에 고려하지 못한 VaR값은 실제 위험량을 적절히 반영하지 못할 가능성이 있다. 따라서 본 연구에서는 이분산성 및 꼬리의 두꺼움을 고려할 수 있는 GARCH-EVT모형이 정규분포를 가정한 VaR와 이분산성을 가정한 VaR보다 높은 성과를 나타내는지 살펴보았다. 연구결과를 요약하면 다음과 같다. 첫째, 주식수익률은 정규분포보다는 꼬리부분이 두꺼운 형태를 보이고, 이분산성을 가진다. 이 경우 정규분포하에서 산출된 VaR는 실제 손실금액을 과소평가할 위험성이 있어 이분산성과 꼬리의 두꺼움을 감안할 수 있는 모형의 도입이 필요함을 알 수 있다. 둘째, 이분산성과 꼬리의 두꺼움을 고려한 GARCH-EVT모형하에서의 VaR는 정규분포를 가정한 VaR와 이분산성을 가정한 VaR보다 높은 성과를 보였다. 셋째, 이분산성 및 꼬리의 두꺼움을 고려한 GARCH-EVT모형하에서의 ES는 정규분포를 가정한 VaR와 이분산성을 가정한 VaR보다 높은 성과를 일관되게 보여주지 않았다. 결론적으로 이분산성과 꼬리의 두꺼움을 동시에 반영한 GARCH-EVT모형하에서 VaR가 금융기관의 위험관리의 유용한 도구가 될 수 있는 가능성을 발견하였다. 비록 상대적으로 높은 성과를 보이지는 않지만 ES는 VaR함께 위험척도로 같이 사용할 때 보수적인 위험관리 차원에 부합될 것이다.
일원분류 모형에서 표준 F-검정을 하기 위해서는 오차항에 대한 등분산성을 가정한다. 그러나 실제로 이러한 가정은 지켜지기 힘들며, 이에 더불어 관찰치가 각 집단별로 일정하지 않고 불균형한 경우에는 F-검정의 유의수준이 지정된 값을 만족시키지 못하며, 따라서 검정력에 관한 분석은 의미가 없게 된다. 본 연구에서는 등분산성이 지켜지지 않고, 자료가 불균형한 경우, 현실적인 상황에서 일반적으로 사용되는 F-검정의 유의수준 유지라는 문제가 어 떤 변화를 겪게 되는지를 확인하고, 더 나아가 유의수준을 유지하기 위해서는 어떤 식의 조정이 가능한지를 살펴보았다.
본 논문은, 장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측 모형을 제안하고자 한다. 트래픽 과부하를 대비하기 위해서, 트래픽 용량은 트래픽의 예측치와 트래픽의 변동 크기에 따라 트래픽의 최대용량을 설정하여야 한다. 이를 위하여 교내 트래픽 자료 중 교내로 들어오는 트래픽과 교외로 나가는 트래픽에 이분산성과 장기기억 모형의 유용성을 확인하였다. 이에 대하여 AR-GARCH 모형, ARMA-GARCH 모형과 장기기억모형인 Fractional ARIMA와 장기기억과 이분산성을 고려한 Fractional ARMA-GARCH 모형을 적용하여 모형의 예측성능을 비교하였다.
시계열 자료의 전이함수분석에 있어서 조건부 이분산성을 도입하고 기존의 선형 이분산모형인 Engle(1982)의 ARCH 모형과 더불어 비선형 모형인 베타-ARCH 및 분계점-ARCH모형을 고려하였다. 모형적합절차를 간략히 소개하였으며 제안된 모형을 미국 나스닥지수와 국내 종합주가지수에 적용시켜본 결과 비선형 ARCH 모형이 우수함을 알 수 있었다.
Communications for Statistical Applications and Methods
/
제15권6호
/
pp.925-937
/
2008
본 논문에서는 주식시장에서 거래되는 다수의 주식거래종목들을 몇 개의 그룹으로 군집화하는 주제를 연구한다. 시간에 관계없이 분산이 일정한 ARMA모형과 다르게, 주가, 환율 등의 금융시계열자료에서는 조건부 이분산성을 따르게 된다. 또한, 많은 사람들이 금융시계열자료에서 관심을 갖는 것은 바로 이 변동성이다. 그러므로, 이 연구에서는 조건부 이분산성을 모형화하기에 적합하다고 알려진 일반화 조건부 이분산성 자기회귀모형에 초점을 맞춘다. 먼저 두 개의 주식종목들 사이에 변동성(volatility)의 유사성 그리고 구조의 유사성을 재는 거리를 정의하고, 모의실험을 수행한다. 실증자료로 최근 3년 동안 관찰된 국내 11개 주가의 수익률을 변동성과 구조에 따라 군집화한다.
로짓모형은 선택대안에 대한 확률 계산이 용이하고, 설명변수의 파라메타 추정이 용이하기 때문에 교통 수단 선택모형으로 널리 쓰여지고 있다. 그러나 이러한 로짓모형은 수단선택 효용함수의 오차항 분포가 선택 대안간에 독립적이고, 그 분산이 동일하다는(IID:Independent and Identically Distributed)가정을 내포한다. 본 연구는 수단선택 효용오차의 분산이 수단간에 동일하다는 가정을 완화시키는 이분산 로짓모형 추정에 관한 연구이다. 수단선택 효용오차항의 동분산성을 극복함으로써 보다 현실적인 통행자의 수단선택행태를 반영하는 로짓모형을 추정하는데 본 연구의 목적이 있다. 이를 위해 로짓모형 오차항의 분산과 직접적인 관련이 있는 규모인자(scale factor)를 도입하였다. 이는 대중 교통과 승용차의 통행시간차이에 따른 이분산성을 고려하도록 정의되었으며, 이를 통행시간 파라메타 추정에 활용하였다. 본 연구에서 개발된 이분산 로짓모형의 추정 결과. 통행자의 통행시간이 증가하면서 대중교통수단과 승용차의 통행시간차이가 동일하더라도 통행자의 대중교통 수단선택확률이 차이를 보임으로 현실적인 통행자의 수단선택 행태를 반영하는 것으로 판명되었다.
이 논문에서는 자산의 수익률과 공통요인이 시간가변적 변동성을 갖는 경우의 APT를 검증하고자 시도하였다. 이를 위하여 1980년 1월부터 1995년 12월까지의 17개업종별 포트폴리오 수익률로부터 주성분분석에 의하여 4개의 공통요인을 추출하였다. (이중 첫 번째 요인은 동일가중 시장수익률과 거의 1에 가까운 상관성을 갖고 있으므로, 추출된 첫 번째 요인 대신에 시장수익률을 사용하였다.) 17개 업종별 포트폴리오에 대한 ARCH모형을 추정한 결과, 12개 포트폴리오의 수익률이 조건부 이분산성을 보이고 있다. 또 네 개의 공통요인 중 시장수익률을 포함한 3개의 요인은 뚜렷한 조건부 이분산성을 보이고 있다. 따라서 요인위험--즉, 공통요인에 대한 개별자산의 민감도$({\beta}_{ij})$--은, 개별자산과 공통요인의 상관계수가 일정하다고 가정하여, ARCH모형에 의해 측정된 자산 및 공통요인의 시간가변 표준편차로부터 계산되었다. 이와 같이 계산된 요인위험에 대하여 어느 정도의 위험프리미엄이 주어지고 있는가는 일반화 적률법(GMM)에 의하여 추정하였다. 그 결과, APT의 추정에 사용된 4개의 공통요인 중 시장수익률을 포함한 3개의 요인에 대하여 유의한 위험프리미엄이 추정되었다.
모의실험 결과를 보통 표나 그림으로 보고한다. 하지만 모의실험이 다양한 조건에서 실시되었고 실험조건마다 추정량의 성능 우위에 대한 결과가 다르면 표와 그림만으로 추정량의 성능을 비교하기가 어렵다. 또한 실행시간이 오래 걸리는 모의실험의 경우 모의실험 반복횟수를 크게 하기 어렵다. 회귀모형을 이용하여 모의실험 결과를 분석하면 보다 체계적이고 효과적으로 추정량의 성능을 비교할 수 있다. 이때 실험조건과 추정량에 따라 성능의 변동이 다를 수 있으므로 회귀모형에서 오차항의 이분산성을 허용해야 하며, 여러 개의 추정량을 동시에 비교해야 하므로 다중비교를 실시해야 한다. 모의실험 결과에 대한 분석이라는 맥락에서 이분산성과 다중비교에 대한 배경이론을 소개하고 예시를 통해 구체적 분석방법도 제시한다.
대한산업공학회/한국경영과학회 1993년도 춘계공동학술대회 발표논문 및 초록집; 계명대학교, 대구; 30 Apr.-1 May 1993
/
pp.424-436
/
1993
패널내 추계적 성분들의 공분산 관계(variance-covariance structure)를 이용한 ML 추정법을 항상소득가설(PIH)의 검증에 적용하였다. Hall & Mishkin의 모형을 기초로 분기별 이분산성(heteroscedasticity)을 고려한 모형의 추정결과 전체 소비변동 중 약 11%가 과도민감성에 의한 것으로 나타났다.
금융 포트폴리오의 두 위험측도인 VaR와 ES에 대한 여러 추정방법을 1일 후와 10일 후의 경우로 나누어 각각 비교하였다. 2008년 미국발 세계 금융위기 기간을 포함한 KOSPI 자료와 해외 5개국의 종합주가지수 자료를 이용하여 실증적으로 비교하였다. 손실 분포의 두터운 꼬리와 조건부 이분산성을 동시에 고려하는 방법을 중심으로 여러 방법을 추가적으로 고려하였고, 국내 자료에 어떤 방법이 적절하며 종합적인 성능은 어떤가를 살펴보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.