• Title/Summary/Keyword: 이분산성

Search Result 64, Processing Time 0.021 seconds

VaR and ES as Tail-Related Risk Measures for Heteroscedastic Financial Series (이분산성 및 두꺼운 꼬리분포를 가진 금융시계열의 위험추정 : VaR와 ES를 중심으로)

  • Moon, Seong-Ju;Yang, Sung-Kuk
    • The Korean Journal of Financial Management
    • /
    • v.23 no.2
    • /
    • pp.189-208
    • /
    • 2006
  • In this paper we are concerned with estimation of tail related risk measures for heteroscedastic financial time series and VaR limits that VaR tells us nothing about the potential size of the loss given. So we use GARCH-EVT model describing the tail of the conditional distribution for heteroscedastic financial series and adopt Expected Shortfall to overcome VaR limits. The main results can be summarized as follows. First, the distribution of stock return series is not normal but fat tail and heteroscedastic. When we calculate VaR under normal distribution we can ignore the heavy tails of the innovations or the stochastic nature of the volatility. Second, GARCH-EVT model is vindicated by the very satisfying overall performance in various backtesting experiments. Third, we founded the expected shortfall as an alternative risk measures.

  • PDF

오차항이 이분산성을 가지는 일원분류 모형에서 일반 F-검정의 유의수준에 관한 고찰

  • 김기환;이준영
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.165-171
    • /
    • 2000
  • 일원분류 모형에서 표준 F-검정을 하기 위해서는 오차항에 대한 등분산성을 가정한다. 그러나 실제로 이러한 가정은 지켜지기 힘들며, 이에 더불어 관찰치가 각 집단별로 일정하지 않고 불균형한 경우에는 F-검정의 유의수준이 지정된 값을 만족시키지 못하며, 따라서 검정력에 관한 분석은 의미가 없게 된다. 본 연구에서는 등분산성이 지켜지지 않고, 자료가 불균형한 경우, 현실적인 상황에서 일반적으로 사용되는 F-검정의 유의수준 유지라는 문제가 어 떤 변화를 겪게 되는지를 확인하고, 더 나아가 유의수준을 유지하기 위해서는 어떤 식의 조정이 가능한지를 살펴보았다.

  • PDF

A Study on the Short Term Internet Traffic Forecasting Models on Long-Memory and Heteroscedasticity (장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측을 위한 시계열 모형 연구)

  • Sohn, H.G.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.1053-1061
    • /
    • 2013
  • In this paper, we propose the time series forecasting models for internet traffic with long memory and heteroscedasticity. To control and forecast traffic volume, we first introduce the traffic forecasting models which are determined by the volatility and heteroscedasticity of the traffic. We then analyze and predict the heteroscedasticity and the long memory properties for forecasting traffic volume. Depending on the characteristics of the traffic, Fractional ARIMA model, Fractional ARIMA-GARCH model are applied and compared with the MAPE(Mean Absolute Percentage Error) Criterion.

Nonlinear approach to modeling heteroscedasticity in transfer function analysis (시계열 전이함수분석 이분산성의 비선형 모형화)

  • 황선영;김순영;이성덕
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.311-321
    • /
    • 2002
  • Transfer function model(TFM) capturings conditional heteroscedastic pattern is introduced to analyze stochastic regression relationship between the two time series. Nonlinear ARCH concept is incorporated into the TFM via threshold ARCH and beta- ARCH models. Steps for statistical analysis of the proposed model are explained along the lines of the Box & Jenkins(1976, ch. 10). For illustration, dynamic analysis between KOSPI and NASDAQ is conducted from which it is seen that threshold ARCH performs the best.

Clustering Korean Stock Return Data Based on GARCH Model (이분산 시계열모형을 이용한 국내주식자료의 군집분석)

  • Park, Man-Sik;Kim, Na-Young;Kim, Hee-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.925-937
    • /
    • 2008
  • In this study, we considered the clustering analysis for stock return traded in the stock market. Most of financial time-series data, for instance, stock price and exchange rate have conditional heterogeneous variability depending on time, and, hence, are not properly applied to the autoregressive moving-average(ARMA) model with assumption of constant variance. Moreover, the variability is font and center for stock investors as well as academic researchers. So, this paper focuses on the generalized autoregressive conditional heteroscedastic(GARCH) model which is known as a solution for capturing the conditional variance(or volatility). We define the metrics for similarity of unconditional volatility and for homogeneity of model structure, and, then, evaluate the performances of the metrics. In real application, we do clustering analysis in terms of volatility and structure with stock return of the 11 Korean companies measured for the latest three years.

Development and Application of the Heteroscedastic Logit Model (이분산 로짓모형의 추정과 적용)

  • 양인석;노정현;김강수
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.57-66
    • /
    • 2003
  • Because the Logit model easily calculates probabilities for choice alternatives and estimates parameters for explanatory variables, it is widely used as a traffic mode choice model. However, this model includes an assumption which is independently and identically distributed to the error component distribution of the mode choice utility function. This paper is a study on the estimation of the Heteroscedastic Logit Model. which mitigates this assumption. The purpose of this paper is to estimate a Logit model that more accurately reflects the mode choice behavior of passengers by resolving the homoscedasticity of the model choice utility error component. In order to do this, we introduced a scale factor that is directly related to the error component distribution of the model. This scale factor was defined so as to take into account the heteroscedasticity in the difference in travel time between using public transport and driving a car, and was used to estimate the travel time parameter. The results of the Logit Model estimation developed in this study show that Heteroscedastic Logit Models can realistically reflect the mode choice behavior of passengers, even if the difference in travel time between public and private transport remains the same as passenger travel time increases, by identifying the difference in mode choice probability of passengers for public transportation.

동태적 요인구조 하에서의 차익거래가격결정이론의 실증적 검증

  • Jo, Dam
    • The Korean Journal of Financial Management
    • /
    • v.15 no.1
    • /
    • pp.329-350
    • /
    • 1998
  • 이 논문에서는 자산의 수익률과 공통요인이 시간가변적 변동성을 갖는 경우의 APT를 검증하고자 시도하였다. 이를 위하여 1980년 1월부터 1995년 12월까지의 17개업종별 포트폴리오 수익률로부터 주성분분석에 의하여 4개의 공통요인을 추출하였다. (이중 첫 번째 요인은 동일가중 시장수익률과 거의 1에 가까운 상관성을 갖고 있으므로, 추출된 첫 번째 요인 대신에 시장수익률을 사용하였다.) 17개 업종별 포트폴리오에 대한 ARCH모형을 추정한 결과, 12개 포트폴리오의 수익률이 조건부 이분산성을 보이고 있다. 또 네 개의 공통요인 중 시장수익률을 포함한 3개의 요인은 뚜렷한 조건부 이분산성을 보이고 있다. 따라서 요인위험--즉, 공통요인에 대한 개별자산의 민감도$({\beta}_{ij})$--은, 개별자산과 공통요인의 상관계수가 일정하다고 가정하여, ARCH모형에 의해 측정된 자산 및 공통요인의 시간가변 표준편차로부터 계산되었다. 이와 같이 계산된 요인위험에 대하여 어느 정도의 위험프리미엄이 주어지고 있는가는 일반화 적률법(GMM)에 의하여 추정하였다. 그 결과, APT의 추정에 사용된 4개의 공통요인 중 시장수익률을 포함한 3개의 요인에 대하여 유의한 위험프리미엄이 추정되었다.

  • PDF

Analysis of simulation results using statistical models (통계모형을 이용하여 모의실험 결과 분석하기)

  • Kim, Ji-Hyun;Kim, Bongseong
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.761-772
    • /
    • 2021
  • Simulation results for the comparison of estimators of interest are usually reported in tables or plots. However, if the simulations are conducted under various conditions for many estimators, the comparison can be difficult to be made with tables or plots. Furthermore, for algorithms that take a long time to run, the number of iterations of the simulation is costly to to be increased. The analysis of simulation results using regression models allows us to compare the estimators more systematically and effectively. Since variances in performance measures may vary depending on the simulation conditions and estimators, the heteroscedasticity of the error term should be allowed in the regression model. And multiple comparisons should be made because multiple estimators should be compared simultaneously. We introduce background theories of heteroscedasticity and multiple comparisons in the context of analyzing simulation results. We also present a concrete example.

패널내 추계적 요인들의 공분산 관계에 의한 ML추정

  • 이회경;이진우
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.04a
    • /
    • pp.424-436
    • /
    • 1993
  • 패널내 추계적 성분들의 공분산 관계(variance-covariance structure)를 이용한 ML 추정법을 항상소득가설(PIH)의 검증에 적용하였다. Hall & Mishkin의 모형을 기초로 분기별 이분산성(heteroscedasticity)을 고려한 모형의 추정결과 전체 소비변동 중 약 11%가 과도민감성에 의한 것으로 나타났다.

  • PDF

Estimation of VaR and Expected Shortfall for Stock Returns (주식수익률의 VaR와 ES 추정: GARCH 모형과 GPD를 이용한 방법을 중심으로)

  • Kim, Ji-Hyun;Park, Hwa-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.651-668
    • /
    • 2010
  • Various estimators of two risk measures of a specific financial portfolio, Value-at-Risk and Expected Shortfall, are compared for each case of 1-day and 10-day horizons. We use the Korea Composite Stock Price Index data of 20-year period including the year 2008 of the global financial crisis. Indexes of five foreign stock markets are also used for the empirical comparison study. The estimator considering both the heavy tail of loss distribution and the conditional heteroscedasticity of time series is of main concern, while other standard and new estimators are considered too. We investigate which estimator is best for the Korean stock market and which one shows the best overall performance.