• Title/Summary/Keyword: 이미징 기술

Search Result 132, Processing Time 0.033 seconds

An Investigation into Three Dimensional Mutable 'Living' Textile Materials and Environments(1) (3D 가상 이미지의 텍스타일 소재로의 적용을 통한 삼차원 변형가능한 'Living Textile'과 환경변화에 관한 연구(1))

  • Kim, Ki-Hoon;Suh, Ji-Sung
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.6
    • /
    • pp.1305-1317
    • /
    • 2010
  • This research aim concerns questioning how we can generate environments suggestive of nature fused with built environments through textiles. Through literature reviews and experiments with available the 3D imaging techniques of Holography, Lenticular and other new technologies, We have researched towards finding the most effective method for 3D imaging techniques for textile applications. This objective is to produce intriguing textile patterns and images in which the objects and colours change as viewpoints change. Experimental work was carried out in collaboration with professional textile researchers, scientists, artists and designers conducting research in this field.

Three-Dimensional Printed Model of Partial Anomalous Pulmonary Venous Return with Biatrial Connection (양측 심방 연결을 형성하는 부분 폐정맥 환류 이상의 3D 프린팅 모델)

  • Myoung Kyoung Kim;Sung Mok Kim;Eun Kyoung Kim;Sung-A Chang;Tae-Gook Jun;Yeon Hyeon Choe
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1523-1528
    • /
    • 2020
  • Partial anomalous pulmonary venous return (PAPVR) is a rare congenital cardiac anomaly that can be difficult to detect and often remains undiagnosed. PAPVR is diagnosed using non-invasive imaging techniques such as echocardiography, CT, and MRI. Image data are reviewed on a 2-dimensional (D) monitor, which may not facilitate a good understanding of the complex 3D heart structure. In recent years, 3D printing technology, which allows the creation of physical cardiac models using source image datasets obtained from cardiac CT or MRI, has been increasingly used in the medical field. We report a case involving a 3D-printed model of PAPVR with a biatrial connection. This model demonstrated separate drainages of the right upper and middle pulmonary veins into the lower superior vena cava (SVC) and the junction between the SVC and the right atrium, respectively, with biatrial communication through the right middle pulmonary vein.

Swimming behavior monitoring of Pacific bluefin tuna (Thunnus orientalis) in the offshore sea cage using the imaging sonar (이미징 소나를 이용한 외해가두리 내 참다랑어의 유영 행동 모니터링)

  • Bo-Kyu HWANG;Myounghee KANG;Min-Son KIM
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • The swimming behavior of pacific bluefin tuna (Thunnus orientalis) in the offshore sea cage of the brass fishing net was observed and analyzed by imaging sonar techniques. The cultured fish spent most of the time swimming a circular path along the circular cage wall and continued to swim only clockwise direction without completely changing the swimming direction during the 23-hour observation time. In addition, changed swimming behaviors were divided into four categories: (a) the behavior of a large group temporarily swimming in the opposite (counter clockwise) direction, (b) the behavior of a small group temporarily swimming in a small circular path, (c) the behavior swimming small circular path in the center of the cage, and (d) the behavior of a large group swimming across the center of the cage. The maximum swimming speed of the cultured fish was from 3.5 to 3.8 TL/s, the mode was from 1.2 to 1.4 TL/s and the swimming speed during the day time was faster than at night time. It was confirmed the cultured fish swam not only on the surface but also near the bottom net of the cage during the day, but swam mainly at the upper part of the cage at night.

Comparison of Paired and Unpaired Image-to-image Translation for 18F-FDG Delayed PET Generation (18F-FDG PET 지연영상 생성에 대한 딥러닝 이미지 생성 방법론 비교)

  • ALMASLAMANI MUATH;Kangsan Kim;Byung Hyun Byun;Sang-Keun Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.179-181
    • /
    • 2023
  • 본 논문에서는 GAN 기반의 영상 생성 방법론을 이용해 delayed PET 영상을 생성하는 연구를 수행하였다. PET은 양전자를 방출하는 방사성 동위원소를 표지한 방사성의약품의 체내 분포를 시각화함으로서 암 세포 진단에 이용되는 의료영상 기법이다. 하지만 PET의 스캔 과정에서 방사성의약품이 체내에 분포하는 데에 걸리는 시간이 오래 걸린다는 문제점이 존재한다. 따라서 본 연구에서는 방사성의약품이 충분히 분포되지 않은 상태에서 얻은 PET 영상을 통해 목표로 하는 충분히 시간이 지난 후에 얻은 PET 영상을 생성하는 모델을 GAN (generative adversarial network)에 기반한 image-to-image translation(I2I)를 통해 수행했다. 특히, 생성 전후의 영상 간의 영상 쌍을 고려한 paired I2I인 Pix2pix와 이를 고려하지 않은 unpaired I2I인 CycleGAN 두 가지의 방법론을 비교하였다. 연구 결과, Pix2pix에 기반해 생성한 delayed PET 영상이 CycleGAN을 통해 생성한 영상에 비해 영상 품질이 좋음을 확인했으며, 또한 실제 획득한 ground-truth delayed PET 영상과의 유사도 또한 더 높음을 확인할 수 있었다. 결과적으로, 딥러닝에 기반해 early PET을 통해 delayed PET을 생성할 수 있었으며, paired I2I를 적용할 경우 보다 높은 성능을 기대할 수 있었다. 이를 통해 PET 영상 획득 과정에서 방사성의약품의 체내 분포에 소요되는 시간을 딥러닝 모델을 통해 줄여 PET 이미징 과정의 시간적 비용을 절감하는 데에 크게 기여할 수 있을 것으로 기대된다.

  • PDF

Contested Technologies, Resetting the Boundary, and the "signifiant-politics": Semiotical Governance of New Technology in the Case of fMRA (경합하는 기술, 경계의 재설정, 그리고 기표-정치(signifiant-politics): 기능성자기공명혈관조영술(fMRA)의 사례로 살펴본 신기술의 명명 작업)

  • Lee, June-Seok
    • Journal of Science and Technology Studies
    • /
    • v.14 no.2
    • /
    • pp.199-222
    • /
    • 2014
  • Functional Magnetic Resonance Angiography (fMRA) was a technoscientific innovation that allows scientists to directly view the changes made in the blood vessels of a brain. fMRA was first developed at Neuroscience Research Institute (NRI) in Korea. fMRA mainly utilizes 7 Tesla MRI technology, and NRI is equipped with the instrument. First article on fMRA was published in 2008, and two more papers in 2010 and 2012 consecutively had been published on the newly developed technique. However, fMRA is a competitive technology with existing fMRI. Both techniques capture microvascular changes in a brain, and by doing it, both techniques visualize the cognitive and affective changes. fMRI technology was introduced by Seiji Ogawa in the early 1990's and has been widely used since then. In contrast, fMRA was a newer technology and rather unknown. Developers of fMRA in NRI used series of signifiant-politics in order to make it better known to scientific community as well as public. By resetting the boundaries of existing concept of fMRI, they tried to lower the threshold of a new concept/technique. This case study shows how technoscientists use semiotic strategies governing new technology.

  • PDF

MSC(Multi-Spectral Camera) 열제어 시스템 소개

  • Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Euk;Jang, Young-Jun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.107-116
    • /
    • 2005
  • As a unique payload of Komsat-2, MSC, comprising EOS(Electro-Optical Sub-system), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Sub-system), is supposed to take pictures of one panchromatic and 4 multi-spectral image between wavelength 450mm~900mm, and is being under final Satellite I&T. It will perform the earth remote sensing with applications such as acquisition of high resolution images, surveillance of large scale disasters and its countermeasure, survey of natural resources, etc.. Under the hostile influence of the extreme space environmental conditions due to deep space and direct solar flux, the thermal design is especially of major importance in designing a payload. There are tight temperature range restrictions for electro-optical elements while on the other hand there are low power consumption requirements due to the limited energy source on the spacecraft. This paper describes details of thermal control system for MSC.

  • PDF

A Implementation of Smart Band and Data Monitoring System available of Measuring Skin Moisture and UV based on ICT (ICT기반의 피부 수분 및 자외선 측정이 가능한 스마트 밴드 및 데이터 모니터링 시스템 구현)

  • Jung, Se-Hoon;Sim, Chun-Bo;You, Kang-Soo;So, Won-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.715-724
    • /
    • 2017
  • Today all kinds of smart devices are being developed with various researches on wearable devices that support smart computing on the human body. Skin diseases continue to rise including freckles, pimples, atopy, and scalp trouble due to the environmental and genetic factors, and people pay bigger medical bills to treat their skin diseases. There is thus a need to develop a smart-phone or table-based smart healthcare imaging system of high portability and diagnostic accuracy capable of analyzing and managing various skin problems related to skin care. This study proposed an integrated system combining the Smart Mi Band, a wearable device using moisture and UV sensors based on IoT, on the hardware part with the sensor information monitoring software.

Nondestructive Evaluation of Nanostructured Thin Film System Using Scanning Acoustic Microscopy (초음파현미경을 이용한 나노 구조 박막 시스템의 비파괴평가)

  • Miyasaka, Chiaki;Park, Ik-Keun;Park, Tae-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.437-443
    • /
    • 2010
  • In recent years, as nano scale structured thin film technology has emerged in various fields such as the materials, biomedical and acoustic sciences, the quantitative nondestructive adhesion evaluation of thin film interfaces using ultra high frequency scanning acoustic microscopy(SAM) has become an important issue in terms of the longevity and durability of thin film devices. In this study, an effective technique for investigating the interfaces of nano scale structured thin film systems is described, based on the focusing of ultrasonic waves, the generation of leaky surface acoustic waves(LSAWs), V(z) curve simulation and ultra high frequency acoustical imaging_ Computer simulations of the V(z) curve were performed to estimate the sensitivity of detection of micro flaws(i.e., delamination) in a thin film system. Finally, experiments were conducted to confirm that a SAM system operating at a frequency of 1 GHz can be useful to visualize the micro flaws in nano structured thin film systems.

A Study on Single Cell Polarized Signals Using Polydimethylsiloxane-based Micropatterned Channel System (폴리디메틸실록산 기반 마이크로패턴 채널 시스템을 이용한 단일 세포의 극성 신호에 관한 연구)

  • Suh, Jung-Soo;Lee, Chanbin;Pan, Yijia;Wang, Yingxiao;Jung, Youngmi;Kim, Tae-Jin
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.122-126
    • /
    • 2020
  • In this study, we produced the micropatterned channel system using polydimethylsiloxane (PDMS) and micromolding in capillaries (MIMIC) technology and evaluated cellular polarity signals through high-resolved imaging at the single-cell level. In cells treated with platelet-derived growth factor (PDGF), three types of key signals in cell migration; phosphoinositide 3-kinase (PI3 K), Rac, and Actin, were strongly activated in the front area compared to the rear region, whereas myosin light chain (MLC) showed no notable activity in the front and rear areas. Our results will, therefore, provide important information and methodology for studying the correlation between cell polarity signals and cell migration under the newly defined microenvironment.

Experimental Investigations of the Characteristics of the Length Variation of Kerosene-Oxygen Laminar Diffusion Flames (등유-산소 층류 확산화염의 길이 변화 특성에 관한 실험적 연구)

  • Lee, Soo-Han;Lee, Jong won;Park, Seul Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.22-27
    • /
    • 2018
  • The flame length in coaxial diffusion flame configurations was investigated when the kerosene fuel flow rate, temperature of the oxidizer stream, and inert gas concentrations in the oxidizer stream were varied. The diffusion flame was photographed using a Schlieren camera under each of the experimental conditions and the obtained images were then digitized to measure the flame length. The measured flame lengths were proportional to the kerosene fuel flow rate and increased with increasing temperature of the oxidizer stream. In addition, increases in the inert gas concentration in the oxidizer stream resulted in stretching of the flame. In particular, the flame was further elongated in the oxidizer steam diluted with helium gas. Inert substitutions in the oxidizer stream that can adjust the viscous drag are believed to be one of the important mechanisms that affect the length of the coaxial diffusion flames.