H.263 압축 방식은 실현하는데 여러 가지 문제가 있지만 그 중에서 그 대표적인 것은 인코딩 과정에서의 압축 시간이 오래 걸린다는 것이고 다른 한 가지는 과도한 압축률에 의한 복원된 이미지 화질 저하이다. 이 논문에서는 H.263에서의 압축 속도 향상과 복원 이미지의 화질 이미지의 화질 보상에 대한 두 가지 새로운 방법을 제안하였다. 압축 속도를 향상시키기 위해서 움직임 벡터를 찾는 알고리즘을 개선하여 새로운 4단계 탐색 알고리즘을 제안하였다. 또한 화질을 보상하기 위해 디코더에서 블록 아티팩을 제거하고 복원 이미지를 선명하게 하는 알고리즘을 제안하였다. 여기서 화질 보상은 원본 이미지와 동일하게 만드는 것이 아니라 인간이 더 좋은 영상으로 인식하도록 하는 걸 목적으로 한다. 우리가 제한한 알고리즘에 의해서 압축 속도는 초당 2.5에서 17 프레임으로 증가하였고 블록 아티팩을 제거하고 명암 대비를 높임으로써 보기 좋은 영상을 제공하였다.
Emotional image quality optimization methodologies are investigated using technological image quality controls based on the eye tests of various image samples. The images are evaluated based on various contrast, lightness and saturation image quality metric tone curves. The order of importance to image quality enhancements is contrast, saturation and brightness. The slopes of emotional image qualities with respect to technical image quality metric changes are found to be composed of mathematical function modelling with nearly zero, intermediate and maximum slope regions in general, which can reflect well known log and saturated as well as conventional reverse U shape natures. Image quality improvements are analyzed not only with just single but also with multiple image quality metrics. To ease the unified image quality metric analysis and control, a new function is presented to utilize both the newly found and conventional emotional image quality behaviors. It is found that the overall image quality enhancement can be realized only in a few limited cases of multiple image quality metric controls. It is also found that the kinds of image quality enhancement methodologies are not strongly dependent on image contents (genre).
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.303-306
/
2021
이미지 초해상도는 영상 취득 과정에서 센서와 렌즈의 물리적인 한계 등으로 인하여 의해 화질이 저하된 이미지를 더 높은 배율로 복원하는 문제이다. 이미지 초해상도는 딥러닝을 통해 놀라운 성능향상을 이루었지만, 카메라로 촬영된 실제 이미지에서는 좋은 성능을 내지 못하였다. 이는 딥러닝에서는 'bicubic' 커널로 down-sampling된 합성 이미지 데이터를 사용하였던 것과 달리 실제 이미지에서는 'bicubic' 커널을 통한 화질 저하와는 다른 화질 저하, 즉 다른 커널을 통한 화질 저하가 발생하기 때문이다. 따라서 실제 이미지에 대한 성능을 높이기 위해서는 이에 대한 정확한 커널 예측이 필요하다. 최근 주목받기 시작한 이미지 초해상도를 위한 커널 예측은 초해상도를 잘 시켜주는 커널을 직접 찾는 방법[10, 13]과 이미지의 분포와 커널을 통해 다운샘플된 이미지에 대한 분포를 일치시켜주면서 커널을 예측하는 방법[14]으로 나누어져 있다. 그러나 두 방법 모두 ill-posed problem 인 커널 예측 문제를 한 장의 이미지만으로 해결하려는 것이기 때문에 정확한 예측에는 어려움이 발생한다. 따라서 본 논문에서는 두 장의 이미지를 활용한 이미지 화질 저하 커널 예측 방법을 제안한다. 제안된 방법은 두 장의 이미지가 같은 카메라를 통해 촬영되었으며 이때 이미지 화질 저하는 카메라에 의해서만 영향을 받는다는 가정을 기반으로 한다. 즉, 두 장의 이미지는 같은 커널을 통해 저하된 이미지라는 가정을 한다. 제안된 방법은 [14]에서처럼 이미지 분포를 기반으로 한 커널 예측을 진행하며, 이미지 초해상도를 진행하고자 하는 이미지 외에 참고 이미지 또한 같은 커널에서 화질 저하를 시켰을 때 본래의 이미지와 같은 분포에 있도록 학습을 진행한다. 결과적으로 본 논문에서는 두 장의 이미지를 사용하였을 때 더욱 정확하게 커널을 찾을 수 있음을 보여준다. 두 장의 이미지를 활용하는 방식이 한 장의 이미지만을 활용하는 기존의 최고 수준의 방법에 비해 합성된 다양한 커널 데이터셋[14]에서 약 0.17dB 성능 향상이 있었다.
Jo, Young-Sim;Yun, Jong-Ho;Park, Jin-Sung;Choi, Myung-Ryul
Journal of Korea Multimedia Society
/
v.9
no.11
/
pp.1455-1464
/
2006
In this paper, we propose an adaptive image enhancement algorithm. The proposed algorithm is classified with the MIE technique for intensity enhancement of input image and MSE techniques for saturation enhancement. The MIE technique is proposed to control the gamut mapping problem and a sudden change in image-brightness while Luminance signal is processing, The MSE techniques are proposed to control de-saturation or over-saturation while chrominance signal is processing. The proposed algorithm is focused on processing preference color for human vision in order to generate better image quality than the algorithms focused on processing uniformly to whole images, This algorithm can be applied to a monitor, TV and other display devices for high quality image.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.394-397
/
2012
멀티미디어 장치와 사용자의 욕구가 다양해짐에 따라 이를 충족시키기 위하여 이미지 크기는 장치에서 지원하는 해상도나 사용자의 욕구에 맞게 조정되어야 한다. 이미지 업샘플링 방법은 크게 공간 도메인과 주파수 도메인에서 수행될 수 있다. 일반적으로 공간 도메인에서의 업샘플링 방법은 주파수 도메인의 업샘플링에 비해 상대적으로 주관적인 화질 측면에서 좋은 성능을 나타내지만 객관적인 성능이 낮다. 반대로 주파수 도메인에서의 업샘플링 방법은 객관적인 화질이 좋고 주관적인 화질 측면에서 상대적으로 성능이 낮게 나타난다. 본 논문에서는 공간 도메인과 주파수 도메인에서의 업샘플링 방법을 블록의 특성에 따라 적응적으로 업샘플링 방법을 선택하는 알고리듬을 제안한다. 제안하는 방법은 객관적 성능 뿐 아니라 주관적 성능까지도 향상 시킬 수 있다. 실험 결과를 통해 제안하는 알고리듬이 기존의 알고리듬에 비해 PSNR 측면에서 0.87dB~1.15dB 증가하고, 주관적 화질도 향상됨을 알 수 있다.
Due to the high interests of image quality by consumers, the concerned market becomes more heated. Recent digital camera development tendency shows to perform the higher image quality to meet consumers demand of quality satisfaction. However it is hard to confirm that development of objective image quality performance means positive subjective image quality preference. And also, we cannot find out the previous researches concerned on correlation between objective and subjective image quality comparison. Therefore, it is necessary to analyze the consumers preferred images based on objective image quality performance. Throughout this paper, we analyze statistical correlation between the objective and subjective image quality assessment methods by using ISO standards. In these results, we try to find attributes that enhance image quality. We suggest not only to analyze and reflect on customers' preferences, but also to pursue the high quality image performance practically. We expect the results of this paper to positively influence product development.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.11a
/
pp.77-80
/
2014
멀티미디어 기술의 보급 확산 및 급속한 발전으로 새로운 영상 압축 기술인 HEVC(High Efficiency Video Coding) 고화질 영상 압축 표준을 탄생시켰으며, 사용자 또한 대형 화면에 대한 선호도가 높아지고 있다. 그 결과 기존의 HD급 영상보다 4배 이상, 16배까지 선명한 초고화질 UHD(Ultra High Definition) 영상 서비스가 차세대 방송기술로 새롭게 주목받고 있다. 또한 JPEG 2000 압축도 기존 처리된 $4096{\times}4096$ 픽셀 이미지를 넘어 초고화질 해상도 이미지(8K : $7680{\times}4320$ 혹은 $8192{\times}4320$ 픽셀)를 처리 지원을 하고 있다. 따라서 초고화질 이미지의 획득 및 저장을 위해서는 고속의 처리 기술이 필요하다. 이에 본 논문은 초고화질 해상도 이미지의 고속 처리를 위한 병렬처리 기술에 대해 단계적 연구를 실행하며, 이를 위하여 1차적으로. JPEG 2000의 처리 과정을 살펴보고 전처리 단계인 색공간 변환 알고리즘 적용을 위하여 사용자 정의의 쓰레드 기반 고속처리를 수행하였다. 실험 결과 기존의 처리보다 사용자 정의 기반 쓰레드 고속처리가 초고화질 해상도 이미지(UHD 8K : $7680{\times}4320$)를 기준으로 최대 15배의 성능 향상의 결과를 보여주었다.
Journal of Satellite, Information and Communications
/
v.10
no.1
/
pp.1-5
/
2015
With the help of fast growing multimedia technology and high preference for users of large screens, the newest video coding standard, HEVC (High Efficiency Video Coding) high-quality video compression), has been introduced. Therefore, the high definition image services which are four times more clear than conventional HD video, are getting popular. JPEG 2000 also has stated to support 4K and 8K UHD. As a result, it requires fast processing technology to read and write UHD images. This paper introduces a study on fast parallel processing technology for UHD images. For this purpose, first, JPEG 2000 is reviewed and a GPU based parallel implementation is proposed for a preprocessing of color conversion stage. The parallelled algorithm is implemented with OpenCL (Open Computing Language). The simulation results show that the proposed method shows 5 times performance improvements on processing speed for 4K UHD over the method using threads.
When a person's face is recognized through a recording device such as a low-pixel surveillance camera, it is difficult to capture the face due to low image quality. In situations where it is difficult to recognize a person's face, problems such as not being able to identify a criminal suspect or a missing person may occur. Existing studies on face recognition used refined datasets, so the performance could not be measured in various environments. Therefore, to solve the problem of poor face recognition performance in low-quality images, this paper proposes a method to generate high-quality images by performing image quality improvement on low-quality facial images considering various environments, and then improve the performance of facial feature point detection. To confirm the practical applicability of the proposed architecture, an experiment was conducted by selecting a data set in which people appear relatively small in the entire image. In addition, by choosing a facial image dataset considering the mask-wearing situation, the possibility of expanding to real problems was explored. As a result of measuring the performance of the feature point detection model by improving the image quality of the face image, it was confirmed that the face detection after improvement was enhanced by an average of 3.47 times in the case of images without a mask and 9.92 times in the case of wearing a mask. It was confirmed that the RMSE for facial feature points decreased by an average of 8.49 times when wearing a mask and by an average of 2.02 times when not wearing a mask. Therefore, it was possible to verify the applicability of the proposed method by increasing the recognition rate for facial images captured in low quality through image quality improvement.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.11a
/
pp.124-127
/
2018
넓은 동적 영역 (High Dynamic Range: HDR) 이미지는 주관적 화질 측면에서 우수하지만 대부분의 디스플레이는 좁은 동적 영역 (Low Dynamic Rang e: LDR) 만 지원이 가능하다. 본 논문에서는 이를 해결하기 위해서 톤 매핑 기법 (Tone Mapping Operator: TMO) 을 사용하여 넓은 동적 영역을 압축하여 수행한다. 기존의 지역 에지 보존 (Local Edge Preserving: LEP) 필터를 적용한 이미지결과는 에지를 보존하지만, 스케일의 분해 과정 중 디테일의 손실이 발생되었다. 본 논문에서는 이미지 변화도를 기반으로 디테일을 보존하는 알고리듬을 제안한다. LEP 필터가 적용되기 전에 이미지의 변화도와 동적 영역이 압축된 후의 이미지에 대한 변화도의 차이만큼 가중하여 디테일을 보존함으로써 주관적 화질을 향상시켰다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.