• 제목/요약/키워드: 이미지 탐지

검색결과 448건 처리시간 0.024초

딥러닝을 이용한 모바일 환경에서 변종 악성코드 탐지 알고리즘 (Algorithm for Detecting Malicious Code in Mobile Environment Using Deep Learning)

  • 우성희;조영복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.306-308
    • /
    • 2018
  • 제안 논문은 딥러닝 알고리즘을 이용해 모바일 환경에서 변종 악성코드 탐지 알고리즘을 제안한다. 안드로이드 기반의 행위 기반의 악성코드 탐지 방법의 문제점을 해결하기 위해 시그니처 기반 악성코드 탐지방법과 머신 러닝(Machine Learning)기법을 활용한 실시간 악성파일 탐지 알고리즘을 통해 높은 탐지율을 증명하였다.

  • PDF

객체 탐지 성능 향상을 위한 생성형 인공지능 기반 데이터 증강 기법 연구 (A Study on Generative Artificial Intelligence-Based Data Augmentation Techniques for Enhancing Object Detection Performance)

  • 김도희;김명호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.51-54
    • /
    • 2023
  • 최근 딥러닝 기술의 발달로 물체 탐지를 위한 객체 인식 분야가 기계학습을 접목한 연구가 급격히 증가하고 있다. 하지만, 탐지하려는 물체가 다른 객체에 가려진 경우와 같이 특수한 상황에 대한 데이터의 수량이 부족하여 성능 저하를 야기한다는 점과, 객체 탐지 수행 과정에서 작은 객체의 탐지가 어렵다는 한계점이 있다. 본 연구는 전술한 문제점을 보완할 방법을 제안한다. 데이터 증강 기법을 이용하여 클래스가 부족한 데이터의 양을 늘려 학습 데이터를 증강시켰다. 한편, SRGAN을 사용하여 작은 객체를 확대시킨 뒤 이미지를 합성시켜 데이터를 구성하였다. 제안된 방법은 PyTorch 환경에서 YOLOv5를 수행한 결과, 객체 탐지 성능이 향상되는 것을 확인할 수 있었다.

  • PDF

특징기반 주의 모듈을 사용하는 CMOS 디지털 이미지 센서 (A CMOS Digital Image Sensor with a Feature-Driven Attention Module)

  • 박민철;최경주
    • 정보처리학회논문지B
    • /
    • 제15B권3호
    • /
    • pp.189-196
    • /
    • 2008
  • 본 논문에서는 A/D 변환기, 모션 예측 회로와 ROI(Region of Interest) 탐지를 위한 주의 모듈로 구성된 CMOS 디지털 이미지 센서를 소개한다. 현재 논문에서 제시하고 있는 이미지 센서의 A/D 변환기와 모션 예측 기능은 하드웨어인 $0.6{\mu}m$의 CMOS 프로세싱 회로(processing circuit)로 구현되어 있으며, ROI 탐지는 주의 모듈로서 소프트웨어로 구현되어 있다. 현재의 이미지 센서는 명암도의 변화에 반응하며, 모션을 예측하기 위해 시간정보를 사용하기 때문에 이미지 센서의 응용분야는 한정되어 있다. 센서라는 본래의 특징을 가지게 하면서 이의 응용분야를 확장하기 위하여 정지영상 및 동영상을 위한 특징기반 주의 모듈을 사용하여 이미지 센서에 인지기능을 부여하고자 한다. 이러한 접근법을 통해 이미지 센서는 모션이 예측되지 않다거나 명암도 변화가 감지되지 않을 경우에도 부가적인 기능을 할 수 있다. 실험결과를 통해 현재 구현된 이미지 센서의 효율성 및 다양한 분야로의 확장가능성을 확인할 수 있었다.

단계적 임계치 결정을 통한 위성레이더이미지 내 선박 탐지 (Ship Detection from Satellite Radar Imagery using Stepwise Threshold Determination)

  • 전호군;조홍연
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.152-153
    • /
    • 2023
  • 선박자동식별장치(AIS)는 데이터의 활용편의성으로 인해 해상교통평가에 많이 사용되어 왔다. 그러나 AIS는 지형물에 의한 전파방해, 도달거리 한계로 인해 거리에 따라 선박위치가 누락되는 문제가 있다. 한편 위성레이더를 이용하면 이러한 문제로부터 자유롭게 광범위한 해양영역에 분포한 선박위치를 파악할 수 있다. 이 연구에서는 합성개구레이더 Sentinel-1 이미지에 단계적으로 임계치를 결정하여 선박을 탐지하는 방법을 제시한다. 제시된 방법은 기존의 이동창 기반 임계치 결정방법에 비해 최대 25배 빠른 탐지 속도를 보였으며, AIS와의 매칭률에서는 유사한 결과를 보였다.

  • PDF

암호화된 VPN 프로토콜 탐지를 위한 오토인코더 기반 이미지 분류 기법 (Autoencoder based image classification technique for detecting encrypted VPN protocols)

  • 홍석현;박예진;엄서정;김정훈;김태욱;조영필
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.125-127
    • /
    • 2024
  • 최근 COVID-19 팬데믹으로 전 세계적으로 원격 근무로의 전환 속도가 가속화되면서 VPN 을 사용하는 기업이 증가하면서 VPN 을 통한 국내 개인정보 및 기술 유출이 빈번하게 일어나고 있다. 기존 전통적인 네트워크 프로토콜 분석 방법은 다양한 우회 방법과 패킷의 암호화로 인해서 VPN 프로토콜 탐지가 불가능하다. 하지만 AI 기반 모델을 사용하면 암호화된 패턴을 학습을 하여 분류가 가능하다. 따라서 본 논문에서는 오토인코더 기반 이미지 분류 기법으로 전통적인 방법으로 탐지하기 불가능하다고 생각했던 암호화된 VPN 패킷 중의 VPN 프로토콜을 직접 수집 및 탐지했고 성능이 0.99 가 나왔다.

해상풍력발전기 조류환경 영향평가를 위한 인공지능 조류충돌방지 시스템

  • 이희용
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 추계학술대회
    • /
    • pp.380-382
    • /
    • 2022
  • 해상풍력발전단지 환경평가를 위한 조류충돌저감장치를 개발하기 위하여, 천연기념물 조류를 구부할 수 있는 인공지능 카메라를 개발한다. 보호해야 할 조류를 90프로 이상 정확하게 구분하기 위한 계층구조 라벨링 방법을 고안하고 YOLO5 모델을 사용하여 학습을 수행하고, 그 결과를 보인다.

  • PDF

CNN과 Kibana를 활용한 호스트 기반 침입 탐지 연구 (Host-based intrusion detection research using CNN and Kibana)

  • 박대경;신동규;신동일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.920-923
    • /
    • 2020
  • 사이버 공격이 더욱 지능화됨에 따라 기존의 침입 탐지 시스템(Intrusion Detection System)은 기존의 저장된 패턴에서 벗어난 지능형 공격을 탐지하기에 적절하지 않다. 딥러닝(Deep Learning) 기반 침입 탐지는 새로운 탐지 규칙을 생성하는데 적절하다. 그 이유는 딥러닝은 데이터 학습을 통해 새로운 침입 규칙을 자체적으로 생성하기 때문이다. 침입 탐지 시스템 데이터 세트는 가장 널리 사용되는 KDD99 데이터와 LID-DS(Leipzig Intrusion Detection-Data Set)를 사용했다. 본 논문에서는 1차원 벡터를 이미지로 변환하고 CNN(Convolutional Neural Network)을 적용하여 두 데이터 세트에 대한 성능을 실험했다. 평가를 위해 Accuracy, Precision, Recall 및 F1-Score 지표를 측정했다. 그 결과 LID-DS 데이터 세트의 Accuracy가 KDD99 데이터 세트의 Accuracy 보다 약 8% 높은 것을 확인했다. 또한, 1차원 벡터에 대한 데이터를 Kibana를 사용하여 데이터를 시각화하여 대용량 데이터를 한눈에 보기 어려운 단점을 해결하는 방법을 제안한다.

웹카메라를 이용한 YOLOv5 기반 화재 감지 시스템 (A Fire Deteetion System based on YOLOv5 using Web Camera)

  • 박대흠;장시웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.69-71
    • /
    • 2022
  • 오늘날 AI의 발전으로 인하여 AI 시장은 매우 커지고 있다. 그중 가장 많이 발전된 AI는 이미지 탐지이다. 그리하여 YOLOv5을 이용하는 많은 객체 탐지 모델이 존재한다. 하지만 AI의 대부분의 객체 탐지는 정형화된 객체 탐지에 중점이 잡혀 있으며 비정형 객체에 대한 연구는 상대적으로 적은 편이다. 따라서 본 논문에서는 YOLOv5을 이용한 화재 감시 시스템을 설계하여 비정형 화재 데이터를 탐지 및 분석하여 화재 탐지시스템을 설계하고 구현하였다.

  • PDF

피부 특징과 비 피부 특징을 이용한 유해 이미지 탐지 방법 (Harmful Image Detection Method Using Skin and Non-Skin Features)

  • 전재현;정민석;장용석;안철웅;김승호
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.55-61
    • /
    • 2015
  • 오늘날 IT 기술의 발달로 사람들에게 많은 편의성이 제공되고 있다. 이 중 스마트폰 시대가 열리면서 시장 환경이 급격하게 바뀌고 있다. 스마트폰으로 인터넷을 자유자재로 이용하게 되면서 음란물 시장은 활개를 치고 있다. 상당수 이용자들은 미국과 일본의 모바일 음란사이트에 곧바로 접속한다. 애플이 앱스토어에서 음란물 서비스를 철저하게 차단하고 있지만 모바일 웹 페이지 접속차단은 불가능한 상황이다. 유해 이미지를 탐지하기 위해 본 논문에서 제안하는 피부 특징과 비 피부 특징을 이용한 이미지의 유해성 판단 방법을 제안한다. 제안한 방법은 기존의 이미지 유해성 판단 방법보다 좋은 성능을 보이는 것을 확인하였다.

컨볼루션 신경망 기반 유해 네트워크 트래픽 탐지 기법 평가 (Assessing Convolutional Neural Network based Malicious Network Traffic Detection Methods)

  • 염성웅;뉘엔 반 퀴엣;김경백
    • KNOM Review
    • /
    • 제22권1호
    • /
    • pp.20-29
    • /
    • 2019
  • 최근 유해 네트워크 트래픽을 탐지하기 위해 머신러닝 기법을 활용하는 다양한 방법론들이 주목을 받고 있다. 이 논문에서는 컨볼루션 신경망 (Convolutioanl Neural Network)을 기반으로 유해 네트워크 트래픽을 분류하는 기법을 소개하고 그 성능을 평가한다. 이미지 처리에 강한 컨볼루션 신경망의 활용을 위해, 네트워크 트래픽의 주요 정보를 규격화된 이미지로 변환하는 방법을 제안하고, 변환된 이미지를 입력으로 컨볼루션 신경망을 학습시켜 유해 네트워크 트래픽의 분류를 수행하도록 한다. 실제 네트워크 트래픽 관련 데이터셋을 활용하여 이미지 변환 및 컨볼루션 신경망 기반 네트워크 트래픽 분류 기법의 성능을 검증하였다. 특히, 다양한 컨볼루션 신경망 기반 네트워크 모델 구성에 따른 트래픽 분류 기법의 성능을 평가하였다.