• Title/Summary/Keyword: 이미지 탐지

Search Result 442, Processing Time 0.02 seconds

Comparative Study of Fish Detection and Classification Performance Using the YOLOv8-Seg Model (YOLOv8-Seg 모델을 이용한 어류 탐지 및 분류 성능 비교연구)

  • Sang-Yeup Jin;Heung-Bae Choi;Myeong-Soo Han;Hyo-tae Lee;Young-Tae Son
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.147-156
    • /
    • 2024
  • The sustainable management and enhancement of marine resources are becoming increasingly important issues worldwide. This study was conducted in response to these challenges, focusing on the development and performance comparison of fish detection and classification models as part of a deep learning-based technique for assessing the effectiveness of marine resource enhancement projects initiated by the Korea Fisheries Resources Agency. The aim was to select the optimal model by training various sizes of YOLOv8-Seg models on a fish image dataset and comparing each performance metric. The dataset used for model construction consisted of 36,749 images and label files of 12 different species of fish, with data diversity enhanced through the application of augmentation techniques during training. When training and validating five different YOLOv8-Seg models under identical conditions, the medium-sized YOLOv8m-Seg model showed high learning efficiency and excellent detection and classification performance, with the shortest training time of 13 h and 12 min, an of 0.933, and an inference speed of 9.6 ms. Considering the balance between each performance metric, this was deemed the most efficient model for meeting real-time processing requirements. The use of such real-time fish detection and classification models could enable effective surveys of marine resource enhancement projects, suggesting the need for ongoing performance improvements and further research.

Deep Learning Based Rescue Requesters Detection Algorithm for Physical Security in Disaster Sites (재난 현장 물리적 보안을 위한 딥러닝 기반 요구조자 탐지 알고리즘)

  • Kim, Da-hyeon;Park, Man-bok;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • If the inside of a building collapses due to a disaster such as fire, collapse, or natural disaster, the physical security inside the building is likely to become ineffective. Here, physical security is needed to minimize the human casualties and physical damages in the collapsed building. Therefore, this paper proposes an algorithm to minimize the damage in a disaster situation by fusing existing research that detects obstacles and collapsed areas in the building and a deep learning-based object detection algorithm that minimizes human casualties. The existing research uses a single camera to determine whether the corridor environment in which the robot is currently located has collapsed and detects obstacles that interfere with the search and rescue operation. Here, objects inside the collapsed building have irregular shapes due to the debris or collapse of the building, and they are classified and detected as obstacles. We also propose a method to detect rescue requesters-the most important resource in the disaster situation-and minimize human casualties. To this end, we collected open-source disaster images and image data of disaster situations and calculated the accuracy of detecting rescue requesters in disaster situations through various deep learning-based object detection algorithms. In this study, as a result of analyzing the algorithms that detect rescue requesters in disaster situations, we have found that the YOLOv4 algorithm has an accuracy of 0.94, proving that it is most suitable for use in actual disaster situations. This paper will be helpful for performing efficient search and rescue in disaster situations and achieving a high level of physical security, even in collapsed buildings.

Development of Thermal Image System Based Multi-Core Image Processor (멀티코어 이미지 프로세서 기반 열화상 이미지 시스템 개발)

  • Cha, Jeong Woo;Han, Joon Hwan;Park, Chan;Kim, Young Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.2
    • /
    • pp.25-30
    • /
    • 2020
  • The thermal image system was widely used in the defence-related industry because of detect infrared light from the object without light. but, as the demand in the security system and automobile market increases, the civilian industry are expanding to the private sector. There are difficult to apply various requirement because of previous systems are based by FPGA, so it need new system that apply to various requirement. The proposed paper is thermal image processing system using common image processor. It has various requirement and scalable to support image input/output interface and device driver. If it is used to proposed system, it reduce development cost and period than previous system based FPGA. Because there has very high accessibility. In addition, it expect to have satisfaction of customer requirements, development cost, development period, release date of product.

Development of Thermal Image Processing Module Using Common Image Processor (상용 이미지 처리 프로세서를 이용한 열화상 이미지 처리 모듈 개발)

  • Han, Joon Hwan;Cha, Jeong Woo;Kim, Bo Mee;Lim, Jae Sung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • The thermal image device support image to detect infrared light from the object without light. It can use not only defence-related industry, but also civilian industry. This paper presents a new thermal image processing module using common image processor. The proposed module shows 10~20% performance improvement with normal mode and 50% performance improvement with sleep mode compared with the previously thermal image module based FPGA. and it guarantees high scalability according to modular system. In addition, the proposed module improves modulation and reuse, so it expect to have reduction of development period, low development cost. various application. In addition, it expect to have satisfaction of customer requirements, development design, development period, release date of product.

Adaptive Scene Classification based on Semantic Concepts and Edge Detection (시멘틱개념과 에지탐지 기반의 적응형 이미지 분류기법)

  • Jamil, Nuraini;Ahmed, Shohel;Kim, Kang-Seok;Kang, Sang-Jil
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.1-13
    • /
    • 2009
  • Scene classification and concept-based procedures have been the great interest for image categorization applications for large database. Knowing the category to which scene belongs, we can filter out uninterested images when we try to search a specific scene category such as beach, mountain, forest and field from database. In this paper, we propose an adaptive segmentation method for real-world natural scene classification based on a semantic modeling. Semantic modeling stands for the classification of sub-regions into semantic concepts such as grass, water and sky. Our adaptive segmentation method utilizes the edge detection to split an image into sub-regions. Frequency of occurrences of these semantic concepts represents the information of the image and classifies it to the scene categories. K-Nearest Neighbor (k-NN) algorithm is also applied as a classifier. The empirical results demonstrate that the proposed adaptive segmentation method outperforms the Vogel and Schiele's method in terms of accuracy.

  • PDF

Image Classification of Damaged Bolts using Convolution Neural Networks (합성곱 신경망을 이용한 손상된 볼트의 이미지 분류)

  • Lee, Soo-Byoung;Lee, Seok-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.109-115
    • /
    • 2022
  • The CNN (Convolution Neural Network) algorithm which combines a deep learning technique, and a computer vision technology, makes image classification feasible with the high-performance computing system. In this thesis, the CNN algorithm is applied to the classification problem, by using a typical deep learning framework of TensorFlow and machine learning techniques. The data set required for supervised learning is generated with the same type of bolts. some of which have undamaged threads, but others have damaged threads. The learning model with less quantity data showed good classification performance on detecting damage in a bolt image. Additionally, the model performance is reviewed by altering the quantity of convolution layers, or applying selectively the over and under fitting alleviation algorithm.

Evaluation of Robustness of Deep Learning-Based Object Detection Models for Invertebrate Grazers Detection and Monitoring (조식동물 탐지 및 모니터링을 위한 딥러닝 기반 객체 탐지 모델의 강인성 평가)

  • Suho Bak;Heung-Min Kim;Tak-Young Kim;Jae-Young Lim;Seon Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.297-309
    • /
    • 2023
  • The degradation of coastal ecosystems and fishery environments is accelerating due to the recent phenomenon of invertebrate grazers. To effectively monitor and implement preventive measures for this phenomenon, the adoption of remote sensing-based monitoring technology for extensive maritime areas is imperative. In this study, we compared and analyzed the robustness of deep learning-based object detection modelsfor detecting and monitoring invertebrate grazersfrom underwater videos. We constructed an image dataset targeting seven representative species of invertebrate grazers in the coastal waters of South Korea and trained deep learning-based object detection models, You Only Look Once (YOLO)v7 and YOLOv8, using this dataset. We evaluated the detection performance and speed of a total of six YOLO models (YOLOv7, YOLOv7x, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x) and conducted robustness evaluations considering various image distortions that may occur during underwater filming. The evaluation results showed that the YOLOv8 models demonstrated higher detection speed (approximately 71 to 141 FPS [frame per second]) compared to the number of parameters. In terms of detection performance, the YOLOv8 models (mean average precision [mAP] 0.848 to 0.882) exhibited better performance than the YOLOv7 models (mAP 0.847 to 0.850). Regarding model robustness, it was observed that the YOLOv7 models were more robust to shape distortions, while the YOLOv8 models were relatively more robust to color distortions. Therefore, considering that shape distortions occur less frequently in underwater video recordings while color distortions are more frequent in coastal areas, it can be concluded that utilizing YOLOv8 models is a valid choice for invertebrate grazer detection and monitoring in coastal waters.

CNN Based Real-Time DNS DDoS Attack Detection System (CNN 기반의 실시간 DNS DDoS 공격 탐지 시스템)

  • Seo, In Hyuk;Lee, Ki-Taek;Yu, Jinhyun;Kim, Seungjoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.3
    • /
    • pp.135-142
    • /
    • 2017
  • DDoS (Distributed Denial of Service) exhausts the target server's resources using the large number of zombie pc, As a result normal users don't access to server. DDoS Attacks steadly increase by many attacker, and almost target of the attack is critical system such as IT Service Provider, Government Agency, Financial Institution. In this paper, We will introduce the CNN (Convolutional Neural Network) of deep learning based real-time detection system for DNS amplification Attack (DNS DDoS Attack). We use the dataset which is mixed with collected data in the real environment in order to overcome existing research limits that use only the data collected in the experiment environment. Also, we build a deep learning model based on Convolutional Neural Network (CNN) that is used in pattern recognition.

A Study on Crack Detection in Asphalt Road Pavement Using Small Deep Learning (스몰 딥러닝을 이용한 아스팔트 도로 포장의 균열 탐지에 관한 연구)

  • Ji, Bongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.13-19
    • /
    • 2021
  • Cracks in asphalt pavement occur due to changes in weather or impact from vehicles, and if cracks are left unattended, the life of the pavement may be shortened, and various accidents may occur. Therefore, studies have been conducted to detect cracks through images in order to quickly detect cracks in the asphalt pavement automatically and perform maintenance activity. Recent studies adopt machine-learning models for detecting cracks in asphalt road pavement using a Convolutional Neural Network. However, their practical use is limited because they require high-performance computing power. Therefore, this paper proposes a framework for detecting cracks in asphalt road pavement by applying a small deep learning model applicable to mobile devices. The small deep learning model proposed through the case study was compared with general deep learning models, and although it was a model with relatively few parameters, it showed similar performance to general deep learning models. The developed model is expected to be embedded and used in mobile devices or IoT for crack detection in asphalt pavement.

Study on Detection Technique for Coastal Debris by using Unmanned Aerial Vehicle Remote Sensing and Object Detection Algorithm based on Deep Learning (무인항공기 영상 및 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착 폐기물 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Na-Kyeong;Jeong, Min-Ji;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Kim, Bo-Ram;Park, Mi-So;Yoon, Hong-Joo;Seo, Won-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1209-1216
    • /
    • 2020
  • In this study, we propose a method for detecting coastal surface wastes using an UAV(Unmanned Aerial Vehicle) remote sensing method and an object detection algorithm based on deep learning. An object detection algorithm based on deep neural networks was proposed to detect coastal debris in aerial images. A deep neural network model was trained with image datasets of three classes: PET, Styrofoam, and plastics. And the detection accuracy of each class was compared with Darknet-53. Through this, it was possible to monitor the wastes landing on the shore by type through unmanned aerial vehicles. In the future, if the method proposed in this study is applied, a complete enumeration of the whole beach will be possible. It is believed that it can contribute to increase the efficiency of the marine environment monitoring field.