Indexing images using traditional indexing methods like taxonomy is not always efficient because of its visual content. This study examined how to apply folksonomies to image retrieval. To do this, first, we developed a category model for image tags found in Flickr. The model includes five categories and seventeen subcategories. Second, in order to evaluate the usefulness of the model to represent the various image tags as well as to investigate the end-user tagging behavior, three researchers classified the sampled image tags(141 most popular tags, 105 tags on three individual tag clouds and 3,848 image tags assigned on 156 images) according to the model. Finally, based on the research results, we proposed three methods for efficient image retrieval: extending folksonomies by combining them with ontologies; improving image retrieval efficiency using visual content and folksonomies; and updating taxonomy using folksonomies.
In this paper we propose a feature vector extraction technique using regression of shape features for the content-based image retrieval system. The proposed technique can reduce the number of dimensions of a feature vector by converting the extracted high-dimensional feature vector into a specific n-dimensional feature vector. This paper shows how to resolve the 'dimensionality curse' problem by reducing the number of dimensions of a feature vector, and shows that the technique is more efficient than the conventional techniques for the practical image retrievals.
Now a days, to make good use of tags is a general tendency when users need to upload or search some multimedia data such as images and videos on the Web. In this paper, we introduce an approach to calculate semantic importance of tags and to make re-ranking with them on tagged Web image retrieval. Generally, most photo images stored on the Web have lots of tags added with user's subjective judgements not by the importance of them. So they become the cause of precision rate decrease with simple matching of tags to a given query. Therefore, if we can select semantically important tags and employ them on the image search, the retrieval result would be enhanced. In this paper, we propose a method to make image retrieval re-ranking with the key tags which share more semantic information with a query or other tags based on Wikipedia-based semantic relatedness. With the semantic relatedness calculated by using huge on-line encyclopedia, Wikipedia, we found the superiority of our method in precision and recall rate as experimental results.
이미지, 비디오, 오디오와 같은 멀티미디어 데이터들은 텍스트기반의 데이터에 비하여 대용량이고 비정형적인 특성을 가지기 때문에 검색이 어렵다. 또한 멀티미디어 데이터의 특징은 행렬이나 벡터의 형태로 표현되기 때문에 완전일치 검색이 아닌 유사 검색을 수행하여 사용자가 원하는 이미지와 유사한 이미지를 검색해야 한다. 본 연구에서는 멀티미디어 데이터 검색에 클러스터링와 인덱싱 기법을 같이 적용하여 유사한 이미지끼리는 인접 디스크에 클러스터하고 이 클러스터에 접근하는 인덱스를 구축하여 검색이 빠르게 이루어지는 유사 검색방법을 제안한다 제안 검색 방법은 클러스터링을 생성하는 알고리즘과 해싱기법의 인덱싱을 같이 적용함으로써 VQ(Vector Quantization)보다 높은 재현율과 정확도를 보인다.
For content-based image retrieval, the earth mover's distance and the optimal color composition distance are proposed to measure the dissimilarity. Although providing good retrieval results, both methods are too time-consuming to be used in a large image database. To solve the problem, we propose a new distance function that calculates an approximate earth mover's distance in linear time. To calculate the dissimilarity in linear time, the proposed approach employs the space-filling curve. We have performed extensive experiments to show the effectiveness and efficiency of the proposed approach. The results reveal that our approach achieves almost the same results with the EMD in linear time.
기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의를 분석하고 질의에 의해 추출된 키 프레임의 이미지를 사용자가 선택함으로써 인덱싱 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다.
For efficient massive image retrieval, an image retrieval requires that several important objectives are satisfied, namely: automated extraction of features, efficient indexing and effective retrieval. In this work, we present a technique for extracting the 4-dimension directional feature. By directional detail, we imply strong directional activity in the horizontal, vertical and diagonal direction present in region of the image texture. This directional information also present smoothness of region. The 4-dimension feature is only indexed in the 4-D space so that complex high-dimensional indexing can be avoided.
Proceedings of the Korean Society for Information Management Conference
/
1999.08a
/
pp.17-20
/
1999
내용기반 이미지 검색에서는 이미지의 하위 영역을 구분하는 방식에 대하여 다양한 접근이 이루어져 왔다. 그중 한 가지가 Stricker와 Dimai가 제안한, 이미지를 다섯개의 영역으로 나누고 그 가운데 주재 객체가 위치할 것을 가정하여 높은 가중치를 부여하는 방법인데, 본 연구에서는 이와 같은 가정이 타당할 것인가를 S.K. Chang의 PIM(Picture Information Measure) 엔트로피를 계산하여 검증하려 하였다. 실험결과 이미지의 중앙과 그 외부 영역 사이에는 유의미한 차이가 존재하는 것으로 나타났으며, 따라서 Stricker와 Dimai의 방식을 지지할 수 있을 것으로 결론 내릴 수 있다.
의미기반 멀티미디어 검색을 하기 위해서는 멀티미디어 대한 의미정보가 필요하며, 이러한 의미정보에는 멀티미디어 데이터 자체보다는 멀티미디어 데이터에 대한 의미 해석이 중요하다. XML은 내용정보나 의미정보의 상호연관성을 표현하기에 적절하므로 본 논문에서는 멀티미디어 정보를 구조화하여 표현하기 위한 방법으로 XML을 사용한다. 또한, 멀티미디어 정보에 따른 의미성을 부여하여 나타내기 위해 퍼지데이터 사전 적용 기술을 사용한다. 의미성을 부여하기 위해 표현되는 데이터는 거의 애매한 표현법을 많이 사용하므로, 퍼지 집합관계를 적용하여 의미 판단의 기준으로 적용한다 따라서, 인간에게 좀 더 친숙하고 편리한 검색을 가능하게 하며, 의미성을 함축한 의미기반 검색을 가능하게 한다. 본 논문에서는 XML을 활용하여 다양한 멀티미디어 정보를 표현하기 위한 스키마 구조와 의미성을 반영한 XQL에 의한 검색기법을 제안한다. 인터넷에서 가장 많이 사용하고 있는 웹 상품 카탈로그 이미지나 광고 이미지에 대하여 의미기반 검색을 지원할 수 있는 방법을 제시한다. 이러한 방법은 애매모호한 표현의 질의에 대하여 검색을 가능하게 할 뿐만 아니라, 의미성을 고려하기 때문에 검색에 대한 만족도를 증대시킬 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.76-78
/
2006
인간의 주관적이고 애매한 감성은 차세대 컴퓨팅의 다양한 분야에서 연구되며. 인간의 감성을 이해하고 감성의 변화에 능동적으로 반응하는 사용자 중심의 정보 처리에 대한 요구가 급격히 증가하고 있다. 우리는 감성기반 이미지 검색을 위해 저차원 시각정보에 대한 강성처리를 연구하고 있다. 기존의 저차원 시각정보 특징을 고려한 내용기반 이미지 검색 방법은 사용자의 취향이나 감성 요구에 적합한 결과를 검색하기에는 많은 어려움이 있다. 본 논문에서는 인간의 감성을 이해, 검색, 인식하기 위한 시각정보와 감성간의 관계 연구 중 우리의 기존 연구인 시각적 형태 정보의 감성어휘 공간에서 형태와 어휘간의 감성거리를 이용한 분류방법을 제안한다. 그리고 분류된 각 영역에서의 대표 어휘를 추출하여 시각적 형태에 따른 감성어휘간의 구체적 계층 관계를 정의한다. 이는 감성기반 이미지 검색 분야에 활용 가능한 연구이며, 우리가 사용하는 언어에 내재된 감성정보를 해석하고 그 어휘들의 체계적인 시각적 감성관계를 정의하는 의의를 갖는다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.