• Title/Summary/Keyword: 이미지 기계 학습

Search Result 172, Processing Time 0.023 seconds

Shape Object Analysis using Machine Learning (학습이론을 통한 모양 객체 분석)

  • 최영관;서민형;박장춘
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.350-352
    • /
    • 1999
  • 하위레벨 이미지프로세싱(Low-Level Image Processing)과 이미지인식과 해석을 주로하는 상위레벨 이미지프로세싱(High-Level Image Processing)의 접목은 현존하는 기술과 연구소서는 상대적으로 접목이 힘들며 아직까지도 많은 연구가 진행되고 있다. 후자에 더 가까운 접근을 위해서 본 논문에서는 특정 이미지를 인식하는 과정에서 모양-기반 객체(Shaped-Based Object)와 기계학습(Machine Learning) 이론을 바탕으로 두 분야의 연관을 시도하였다. 이미지 내의 객체에 대한 기하학적인 특징을 얻기 위해서 모양-기반의 특징값 추출방법을 제시하고 있으며, 보다 발전된 인식을 위해서 기계학습이론을 적용시키고 있다.

  • PDF

Performance of Real-time Image Recognition Algorithm Based on Machine Learning (기계학습 기반의 실시간 이미지 인식 알고리즘의 성능)

  • Sun, Young Ghyu;Hwang, Yu Min;Hong, Seung Gwan;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.69-73
    • /
    • 2017
  • In this paper, we developed a real-time image recognition algorithm based on machine learning and tested the performance of the algorithm. The real-time image recognition algorithm recognizes the input image in real-time based on the machine-learned image data. In order to test the performance of the real-time image recognition algorithm, we applied the real-time image recognition algorithm to the autonomous vehicle and showed the performance of the real-time image recognition algorithm through the application of the autonomous vehicle.

Machine Learning Data Extension Way for Confirming Genuine of Trademark Image which is Rotated (회전한 상표 이미지의 진위 결정을 위한 기계 학습 데이터 확장 방법)

  • Gu, Bongen
    • Journal of Platform Technology
    • /
    • v.8 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • For protecting copyright for trademark, convolutional neural network can be used to confirm genuine of trademark image. For this, repeated training one trademark image degrades the performance of machine learning because of overfitting problem. Therefore, this type of machine learning application generates training data in various way. But if genuine trademark image is rotated, this image is classified as not genuine trademark. In this paper, we propose the way for extending training data to confirm genuine of trademark image which is rotated. Our proposed way generates rotated image from genuine trademark image as training data. To show effectiveness of our proposed way, we use CNN machine learning model, and evaluate the accuracy with test image. From evaluation result, our way can be used to generate training data for machine learning application which confirms genuine of rotated trademark image.

  • PDF

Image Generation Method for Malware Detection Based on Machine Learning (기계학습 기반 악성코드 검출을 위한 이미지 생성 방법)

  • Jeon, YeJin;Kim, Jin-e;Ahn, Joonseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.381-390
    • /
    • 2022
  • Many attempts have been made to apply image recognition based on machine learning which has recently advanced dramatically to malware detection. They convert executable files to images and train deep learning networks like CNN to recognize or categorize dangerous executable files, which shows promising results. In this study, we are looking for an effective image generation method that may be used to identify malware using machine learning. To that end, we experiment and assess the effectiveness of various image generation methods in relation to malware detection. Then, we suggest a linear image creation method which represents control flow more clearly and our experiment shows our method can result in better precision in malware detection.

Image Classification of Damaged Bolts using Convolution Neural Networks (합성곱 신경망을 이용한 손상된 볼트의 이미지 분류)

  • Lee, Soo-Byoung;Lee, Seok-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.109-115
    • /
    • 2022
  • The CNN (Convolution Neural Network) algorithm which combines a deep learning technique, and a computer vision technology, makes image classification feasible with the high-performance computing system. In this thesis, the CNN algorithm is applied to the classification problem, by using a typical deep learning framework of TensorFlow and machine learning techniques. The data set required for supervised learning is generated with the same type of bolts. some of which have undamaged threads, but others have damaged threads. The learning model with less quantity data showed good classification performance on detecting damage in a bolt image. Additionally, the model performance is reviewed by altering the quantity of convolution layers, or applying selectively the over and under fitting alleviation algorithm.

Development of Location Image Analysis System design using Deep Learning

  • Jang, Jin-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.77-82
    • /
    • 2022
  • The research study was conducted for development of the advanced image analysis service system based on deep learning. CNN(Convolutional Neural Network) is built in this system to extract learning data collected from Google and Instagram. The service gets a place image of Jeju as an input and provides relevant location information of it based on its own learning data. Accuracy improvement plans are applied throughout this study. In conclusion, the implemented system shows about 79.2 of prediction accuracy. When the system has plenty of learning data, it is expected to predict various places more accurately.

이미지 기반 적대적 사례 생성 기술 연구 동향

  • O, Hui-Seok
    • Review of KIISC
    • /
    • v.30 no.6
    • /
    • pp.107-115
    • /
    • 2020
  • 다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.

Development of Image Defect Detection Model Using Machine Learning (기계 학습을 활용한 이미지 결함 검출 모델 개발)

  • Lee, Nam-Yeong;Cho, Hyug-Hyun;Ceong, Hyi-Thaek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.513-520
    • /
    • 2020
  • Recently, the development of a vision inspection system using machine learning has become more active. This study seeks to develop a defect inspection model using machine learning. Defect detection problems for images correspond to classification problems, which are the method of supervised learning in machine learning. In this study, defect detection models are developed based on algorithms that automatically extract features and algorithms that do not extract features. One-dimensional CNN and two-dimensional CNN are used as algorithms for automatic extraction of features, and MLP and SVM are used as algorithms for non-extracting features. A defect detection model is developed based on four models and their accuracy and AUC compare based on AUC. Although image classification is common in the development of models using CNN, high accuracy and AUC is achieved when developing SVM models by converting pixels from images into RGB values in this study.

Deep Learning Based CCTV Fire Detection System (딥러닝 기반 CCTV 화재 감지 시스템)

  • Yim, Jihyeon;Park, Hyunho;Lee, Wonjae;Kim, Seonghyun;Lee, Yong-Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.139-141
    • /
    • 2017
  • 화재는 다른 재난보다 확산 속도가 빠르기 때문에 신속하고 정확한 감지와 지속적인 감시가 요구된다. 최근, 신속하고 정확한 화재 감지를 위해, CCTV(Closed-Circuit TeleVision)으로 획득한 이미지를 기계학습(Machine Learning)을 이용해 화재 발생 여부를 감지하는 화재 감지 시스템이 주목받고 있다. 본 논문에서는 기계학습의 기술 중 정확도가 가장 높은 딥러닝(Deep Learning)기반의 CCTV 화재 감지 시스템을 제안한다. 본 논문의 시스템은 딥러닝 기술 적용뿐만이 아니라, CCTV 이미지 전처리 과정을 보완함으로써 딥러닝에서의 미지 데이터(unseen data)의 낮은 분류 정확도 문제인 과적합(overfitting)문제를 해결하였다. 본 논문의 시스템은 약 80,000 개의 CCTV 이미지 데이터를 학습하여, 90% 이상의 화재 이미지 분류 정확도의 성능을 보여주었다.

  • PDF

Automated infographic recommendation system based on machine learning (기계학습 기반의 인포그래픽 자동 추천 시스템)

  • Kim, Hyeong-Gyun;Lee, Sang-hee
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • In this paper, a machine learning-based automatic infographic recommendation system is proposed to improve the existing infographic production method. This system consists of a part that machine learning multiple infographic images and a part that automatically recommends infographics with artificial intelligence only by inputting basic data from the user. The recommended infographics are provided in the form of a library, and additional data can be input by drag & drop method. In addition, the infographic image is designed to be dynamically adjusted according to the size of the input data. As a result of analyzing the machine learning-based automatic infographic recommendation process, the matching success rate for layout and keyword was very high, and the matching success rate for type was rather low. In the future, a study to improve the matching success rate for the image type for each part of the infographic will be needed.