• Title/Summary/Keyword: 이류모델

Search Result 72, Processing Time 0.02 seconds

Analysis of Forcing Terms Determining the Thermospheric Wind Vortices at High Latitudes (고위도 열권 바람에서 소용돌이를 일으키는 강제항들에 대한 분석)

  • Kwak, Young-Sil;Ahn, Byung-Ho;Kim, Khan-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.415-424
    • /
    • 2008
  • Kwak et al. (2008) found that the mean neutral wind pattern in the high-latitude lower thermosphere is dominated by rotational flow than by divergent flow. As an extension of the our previous work (Kwak et al. 2008), we performed a term analysis of vorticity equation that describes the driving forces for the rotational component of the horizontal wind in order to determine key processes that causes strong rotational flow in the high-latitude lower thermospheric winds. For this study the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) is used. The primary forces that determine variations of the vorticity are the ion drag term and the horizontal advection term. Significant contributions, however, can be made by the stretching term. The effects of IMF on the vorticity forces are seen down to around 105-110km.

Rates of Sediment Accumulation and Particle Mixing in the KODOS Site of the Clarion-Clipperton Fracture Zones (클라리온-클리퍼톤 KODOS 지역 퇴적물의 퇴적율과 입자혼합율)

  • MOON, DEOK SOO;KIM, KEE HYUN
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.288-301
    • /
    • 1995
  • Rates of the sedimentation and particle mixing have been estimated by applying uranium-series disequilibrium techniques to three sediment cores collected from the korea Deep Ocean Study (KODOS) site between the clarion and Clipperton Fracture Zones (CCFZ) of the Equatorial Pacific. Sedimentation rates based on the profiles of excess /SUP 230/Th activity and /SUP 230/ Th/SUB xs//SUP 232/ Th activity ratios at the southeastern part of the study area were estimated to be in the order of a few millimeters per thousand year, while at the northwestern part a factor of ten lower. Excess activities of /SUP 230/Th and /SUP 230/Th ratios showed intervals of constant values in the upper part of the sediment cores, probably generated by biological particle mixing. A "two-box" advection-diffusion steady state mixing model was employed in order to estimate particle mixing rates in the upper and the lower layers, based on the distribution profiles of excess /SUP 210/Pb activities. Particle mixing coefficients were estimated to be in the order of 10$^1$ cm$^2$/y in the upper layer and 10/SUP -1/-10/SUP 0/ cm$^2$/y in the lower layer.

  • PDF

Column Test for Evaluation on Removal Efficiency of Heavy Metal and Nutrients by Double Layered Permeable Reactive Barrier (주상실험을 통한 연속식 반응벽체에서의 복합오염물질 제거능 평가)

  • Oh, Myounghak;Kim, Yongwoo;Park, Junboum;Kwon, Osoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.5-11
    • /
    • 2015
  • The double sheeted permeable reactive barrier containing two different reactive materials can be applied to remediate the groundwater contaminated by nutrients and heavy metals. In this study, in order to evaluate the removal efficiency of contaminants including ammonium, cadmium and phosphate by double layered permeable reactive barrier containing zeolite and steelmaking slag, column tests were performed. In addition, nonequilibrium reaction in column tests was analyzed by two-site nonequilibrium advection-dispersion model. Column test results showed that zeolite is effective for removal of ammonium, while steelmaking slag is effective for removal of phosphate and cadmium. The sequential reaction of zeolite and steelmaking slag gave the better removal efficiency for ammonium.

A Mechanism Analysis of Landspout Generation Occurred over Ilsan on June 10 2014 using a Numerical Model (수치모델을 활용한 2014년 6월 10일 일산 용오름 발생 메커니즘 분석)

  • In, So-Ra;Jung, Sueng-Pil;Shim, JaeKwan;Choi, Byoung-Choel
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.187-199
    • /
    • 2016
  • The purpose of this study is to investigate the formation mechanism of landspout by using the Cloud Resolving Storm Simulator (CReSS). The landspout occurred over Ilsan, Goyang City, the Republic of Korea on June 10, 2014 with the damage of a private property. In synoptic environment, a cold dry air on the upper layers of the atmosphere, and there was an advection with warm and humid air in the lower atmosphere. Temperature differences between upper and lower layers resulted in thermal instability. The storm began to arise at 1920 KST and reached the mature stage in ten minutes. The cloud top height was estimated at 9 km and the hook echo was appeared at the rear of a storm in simulation result. Model results showed that the downburst was generated in the developed storm over the Ilsan area. This downburst caused the horizontal flow when it diverged near the surface. The horizontal flow was switched to updraft at the rear of storm, and the rear-flank downdrafts (RFDs) current occurred from simulation result. The RFDs took down the vertical flow to the surface. After then, the vertical vorticity could be generated on the surface in simulation result. Subsequently, the vertical vorticity was stretched to form a landspout. The cyclonic vorticity of echo hook from simulation was greater than $3{\times}10^{-2}s^{-1}$(height of 360 m) and landspout diameter was estimated at 1 km.

A Three-Dimensional Galerkin-FEM Model with Density Variation (밀도 변화를 포함하는 3차원 연직함수 전개모형)

  • 이호진;정경태;소재귀;강관수;정종율
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.123-136
    • /
    • 1996
  • A three-dimensional Galerkin-FEM model which can handle the temporal and spatial variation of density is presented. The hydrostatic approximation is used and density effects are included by means of conservation equation of heat and the equation of state. The finite difference grids are used in the horizontal plane and a set of linear-shape functions is used for the vertical expansion. The similarity transform is introduced to solve resultant matrix equations. The proposed model was first applied to the density-driven circulation in an idealized basin in the presence of the heat exchange between the air and the sea. The advection terms in the momentum equation were ignored, while the convection terms were retained in the heat equation. Coefficients of the vertical eddy viscosity and diffusivity were fixed to be constant. Calculation in a non-rotating idealized basin shows that the difference in heat capacity with depth gives rise to the horizontal gradient of temperature. Consequently, there is a steady new in the upper layer in the direction of increasing depth with compensatory counter flow .in the lower layer. With Coriolis force, geostrophic flow was predominant due to the balance between the pressure gradient and the Coriolis force. As a test in region of irregular topography, the model is applied to the Yellow Sea. Although the resultant flow was very complex, the character of the flow Showed to be geostrophic on the whole.

  • PDF

A Numerical Study of the Effects of Land Characteristics on the Air Cooling (지표면 특성에 따른 대기 냉각 효과에 관한 수치적 연구)

  • An, Jae-Ho;Kim, Tae-Wan;Lee, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.264-271
    • /
    • 2004
  • A three-dimensional numerical mesoscale model by Pielke's estimation (University of Virginia Mesoscale Model, UVMM) was applied to investigate the effects of land characteristics including land-humidity, land-roughness and land-albedo on some micro-climatic coefficients and the air cooling capacity. The results indicated that land-characteristics exposed a significant effect on air cooling. Air cooling effects between in urban and agricultural areas were compared and the effects were much higher in agricultural area. Air cooling effects of weed species were different and when converted into economic values by diesel oil price the effects were ranged from 411 to 816 Won/plant.

The Development of VR based Application for Realistic Disaster Prevention Training (현실감 있는 재난재해 예방 교육을 위한 VR 기반 앱 개발)

  • Kim, Taehoon;Youn, Junhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.287-293
    • /
    • 2018
  • The Korean peninsula has been known as an area that is free of volcanic disasters. However, recent observations and research results of volcanoes in Far East Asia, including Baedu Mountain and Japanese volcanoes, show that the Korean peninsula is no longer a safe area from volcanic disasters. Since 2012, the Korean government has been developing an IT-based construction technology, VDRS (Volcanic Disaster Response System), for effective volcanic disaster response system. The main users of VDRS are public officers in central or local governments. However, most of them have little experience and knowledge about volcanic disasters. Therefore, it is essential to develop education contents and implement training on volcanic disaster response for effective response in a real disaster situation. In this paper, we deal with the development of a mobile application based on virtual reality (VR) for realistic volcanic disaster response training. The objectives of training are the delivery of knowledge and experience for volcanic disasters. First, VR contents were generated based on spatial information. A 3D model was constructed based on a Digital Elevation Model (DEM), and visualization models for meterological effects and various volcanic disaster diffusion effects were implemented for the VR contents. Second, the mobile application for the volcanic disaster response training was implemented. A 12-step story board is proposed for volcanic disaster experience. The application was developed with the Unity3D engine based on the proposed story board to deliver knowledge of various volcanic disasters (volcanic ash, pyroclastic flows, volcanic mudflow etc.). The results of this paper will be used for volcanic disaster response and prevention training and for more realistic training linked with augmented reality technology in the future.

Introduction to Researches on the Characteristics of Gas Migration Behavior in Bentonite Buffer (벤토나이트 완충재 내 기체 이동의 거동 특성 관련 연구 동향 소개)

  • Kang, Sinhang;Kim, Jung-Tae;Lee, Changsoo;Kim, Jin-Seoup
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.333-359
    • /
    • 2021
  • Gases such as hydrogen and radon can be generated around the canister in high-level radioactive waste disposal systems due to several reasons including the corrosion of metal materials. When the gas generation rate exceeds the gas diffusion rate in the low-permeability bentonite buffer, the gas phase will form and accumulate in the engineered barrier system. If the gas pressure exceeds the gas entry pressure, gas can migrate into the bentonite buffer, resulting in pathway dilation flow and advective flow. Because a sudden occurrence of dilation flow can cause radionuclide leakage out of the engineered barrier of the radioactive waste disposal system, it is necessary to understand the gas migration behavior in the bentonite buffer to quantitatively evaluate the long-term safety of the engineered barrier. Experimental research investigating the characteristics of gas migration in saturated bentonite and research developing numerical models capable of simulating such behaviors are being actively conducted worldwide. In this technical note, previous gas injection experiments and the numerical models proposed to verify such behaviors are introduced, and the future challenges necessary for the investigation of gas migration are summarized.

Development of Simplified Immersed Boundary Method for Analysis of Movable Structures (가동물체형 구조물 해석을 위한 Simplified Immersed Boundary법의 개발)

  • Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.93-100
    • /
    • 2021
  • Since the IB (Immersed Boundary) method, which can perform coupling analysis with objects and fluids having an impermeable boundary of arbitrary shape on a fixed grid system, has been developed, the IB method in various CFD models is increasing. The representative IB methods are the directing-forcing method and the ghost cell method. The directing-forcing type method numerically satisfies the boundary condition from the fluid force calculated at the boundary surface of the structure, and the ghost-cell type method is a computational method that satisfies the boundary condition through interpolation by placing a virtual cell inside the obstacle. These IB methods have a disadvantage in that the computational algorithm is complex. In this study, the simplified immersed boundary (SIB) method enables the analysis of temporary structures on a fixed grid system and is easy to expand to three proposed dimensions. The SIB method proposed in this study is based on a one-field model for immiscible two-phase fluid that assumes that the density function of each phase moves with the center of local mass. In addition, the volume-weighted average method using the density function of the solid was applied to handle moving solid structures, and the CIP method was applied to the advection calculation to prevent numerical diffusion. To examine the analysis performance of the proposed SIB method, a numerical simulation was performed on an object falling to the free water surface. The numerical analysis result reproduced the object falling to the free water surface well.

Hydraulic Characteristics of Anaerobic Fluidized Bed Bioreactor (혐기성 유동상 반응기의 수리학적 특성)

  • Seok, Jong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.90-96
    • /
    • 2018
  • Tracer experiments were carried out on two laboratory modes, "without media mode" and "with media mode", to examine the hydraulic characteristics of the anaerobic fluidized bed bioreactor (AFBR). For both configurations, a formula was derived for the hydraulics and data interpretation to obtain the actual characteristics of the reactor. The dispersion model is based on the assumption that carriers are non-reacting and the dispersion coefficient is constant. The model represents the one-dimensional unsteady-state concentration distribution of the non-reacting tracer in the reactors. The experimental results showed that the media increased the mixing conditions in the reactor considerably. For the reactor without media, in the range tested, the dispersion coefficient was at least an order of magnitude smaller than that of the reactor with media. Advective transport dominates and the flow pattern approaches the plug flow reactor (PFR) regime. The dispersion coefficient increased significantly as us, the superficial liquid velocity, was increased proportionally to 0.82cm/s. On the other hand, for the reactor with media, the flow pattern was in between a PFR and a completely mixed flow reactor (CMFR) regime, and the dispersion coefficient was saturated at us=0.41cm/s, remaining relatively constant, even at us=0.82cm/s. The dispersion coefficient depends strongly on the liquid Reynolds number (Re) or the particle Reynolds number (Rep) over the range tested.