DOI QR코드

DOI QR Code

수치모델을 활용한 2014년 6월 10일 일산 용오름 발생 메커니즘 분석

A Mechanism Analysis of Landspout Generation Occurred over Ilsan on June 10 2014 using a Numerical Model

  • 인소라 (국립기상과학원 관측기반연구과 재해기상연구센터) ;
  • 정승필 (국립기상과학원 관측기반연구과 재해기상연구센터) ;
  • 심재관 (국립기상과학원 관측기반연구과 재해기상연구센터) ;
  • 최병철 (국립기상과학원 관측기반연구과 재해기상연구센터)
  • In, So-Ra (High-impact Weather Research Center, Observational Research Division, National Institute of Meterological Sciences) ;
  • Jung, Sueng-Pil (High-impact Weather Research Center, Observational Research Division, National Institute of Meterological Sciences) ;
  • Shim, JaeKwan (High-impact Weather Research Center, Observational Research Division, National Institute of Meterological Sciences) ;
  • Choi, Byoung-Choel (High-impact Weather Research Center, Observational Research Division, National Institute of Meterological Sciences)
  • 투고 : 2016.06.23
  • 심사 : 2016.08.22
  • 발행 : 2016.08.30

초록

이 연구에서는 2014년 6월 10일 일산에서 발생한 용오름에 대해 구름분해모델(CReSS)를 활용하여 재현실험을 수행하고 발생 메커니즘을 분석하였다. 종관적으로는 대기 상층의 한랭하고 건조한 공기가 남하하였으며, 대기 하층에서는 온난하고 습윤한 공기의 이류가 있었다. 이로 인해 대기 상 하층 기온의 큰 차이가 발생하면서 강한 대기 불안정을 야기 시켰다. 19시 20분에 일산 지역에서 스톰이 발달하기 시작하여 10분 만에 최성기에 도달하였다. 재현 실험 결과 이 때 발달한 스톰의 높이는 9 km이었으며, 스톰 후면으로 갈고리 에코(hook echo)가 나타났다. 일산 주변으로 발달한 스톰 내부에서는 활강 기류가 발생하는 것으로 모의 되었다. 모의된 하강기류가 지면에서 발산되어 수평 흐름으로 변하게 되었고, 이 흐름은 스톰의 후면에서 상승류로 전환 되었다. 이 때 후면에서 강한 하강기류가 발생하였는데 이 하강류가 전환된 상승류를 지면까지 끌어내려 지면에서 소용돌이도가 발달하게 되었다. 그 이후 이 소용돌이도가 연직으로 신장되면서 용오름이 모의되었다. 모의된 용오름에서 발달한 저기압성 소용돌이도는 360 m 고도에서 $3{\times}10^{-2}s^{-1}$이었으며, 용오름의 직경은 900 m 고도에서 1 km로 추정되었다.

The purpose of this study is to investigate the formation mechanism of landspout by using the Cloud Resolving Storm Simulator (CReSS). The landspout occurred over Ilsan, Goyang City, the Republic of Korea on June 10, 2014 with the damage of a private property. In synoptic environment, a cold dry air on the upper layers of the atmosphere, and there was an advection with warm and humid air in the lower atmosphere. Temperature differences between upper and lower layers resulted in thermal instability. The storm began to arise at 1920 KST and reached the mature stage in ten minutes. The cloud top height was estimated at 9 km and the hook echo was appeared at the rear of a storm in simulation result. Model results showed that the downburst was generated in the developed storm over the Ilsan area. This downburst caused the horizontal flow when it diverged near the surface. The horizontal flow was switched to updraft at the rear of storm, and the rear-flank downdrafts (RFDs) current occurred from simulation result. The RFDs took down the vertical flow to the surface. After then, the vertical vorticity could be generated on the surface in simulation result. Subsequently, the vertical vorticity was stretched to form a landspout. The cyclonic vorticity of echo hook from simulation was greater than $3{\times}10^{-2}s^{-1}$(height of 360 m) and landspout diameter was estimated at 1 km.

키워드

참고문헌

  1. Agee, E. and Jones, E., 2009, Proposed conceptual for proper identification and classification of tornado events. American Meteorological Society. 24, 609-617.
  2. Brown, R.A. and Meitin, R.J., 1994, Evolution and morphology of two splitting thunderstorms with dominant left-moving members. Monthly Weather Review. 122, 2052-2067. https://doi.org/10.1175/1520-0493(1994)122<2052:EAMOTS>2.0.CO;2
  3. Choi, B.-S., Lee, E.-G., and Hong, S.-G., 1990, On the tornado occurred on 12 October 1989 in Hongsong county. Asia-Pacific Journal of Atmospheric Sciences. 26(1), 48-60. (in Korean)
  4. Cook, C., Kim, S.-S., and Lee, C., 1965, On the seoul tornado of September 13 1964. Asia-Pacific Journal of Atmospheric Sciences, 1(1), 1-7. (in Korean)
  5. Cotton, W.R., Tripoli, G.J., Rauber, R.M., and Mulvihill, E.A., 1986, Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. Journal of Climate and Applied Meteorology, 25, 1658-1680. https://doi.org/10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2
  6. Davies-Jones, R. and Brooks, H.E., 1993, Mesocyclogenesis from a theoretical perspective, in the tornado: Its structure, dynamics, prediction, and hazards. Geophysical Monograph Series American Geophysical Union, 79, 105-114.
  7. Davies-Jones, R., Trapp, R.J., and Bluestein, H.B., 2001, Tornadoes and tornadic storms. Meteorological Monographs American Meteorological Society. 50, 167-221.
  8. Djuric, D., 1994, Weather analysis. Prentice-Hall, 304 p.
  9. Eblen, L.H., Ladd, J.W., and Hicks T.M., 1990, Severe thunderstorm forecasting. NOAA Technical memorandum NWS SR-130. National Weather Service Forecast Office, 42 p.
  10. Grasso, L.D. and Cotton, W.R., 1995, Numerical simulation of a tornado vortex. Journal of the Atmospheric Sciences, 52(8), 1192-1203. https://doi.org/10.1175/1520-0469(1995)052<1192:NSOATV>2.0.CO;2
  11. Ikawa, M. and Saito, K., 1991, Description of a nonhydrostatic model developed at the forecast research department of the MRI. Technical Reports of the Meteorological Research Institute, 28. Meteorological Research Institute, 238 p.
  12. Jeong, J.H., Kim, Y.H., Oh, S.B., Lim, E., and Joo, S., 2016, Investigation of Goyang tornado outbreak using X-band polarimetric radar: 10 June 2014. Atmosphere Korean Meteorological Society, 26, 47-58. (in Korean)
  13. Kim, J.Y., 2014, The science and technology. The Korean Federation of Science and Technology Societies, 543, 100-103. (in Korean)
  14. Kim, Y.C. and Ham, S.J., 2009, Heavy rainfall prediction using convective instability index. Journal of the Korean Society for Aviation and Aeronautics, 17, 17-23.
  15. Klemp, J.B. and Wilhelmson, R.B., 1978, The simulation of the three-dimensional convective storm dynamics. Journal of the Atmospheric Sciences, 35, 1070-1096. https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2
  16. KMA, 2014, Prediction skill using forecast essential element. Korea Meteorological Administration, 226-235. (in Korean)
  17. KMA, 2015, The meteorological yearbook. Korea Meteorological Administration, 142pp. (in Korean)
  18. KMS, 2009, Introduction to atmospheric science. Sigmapress, 184 p. (in Korean)
  19. Lin, Y.L., Farley, R.D., and Orville, H.D., 1983, Bulk parameterization of the snow field in a cloud model. Journal of Climate and Applied Meteorology, 22, 1065-1092. https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
  20. Markowski, P.M., 2002, Hook echoes and rear-flank downdrafts: A review. Monthly Weather Review, 130, 852-876. https://doi.org/10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2
  21. Markowski, P.M. and Richardson, Y.P., 2009, Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmospheric Research, 93, 3-10. https://doi.org/10.1016/j.atmosres.2008.09.015
  22. Mellor, G.L. and Yamada, T., 1974, A hierarchy of turbulent closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31, 1791-1806. https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
  23. Moller, A.R. and Doswell, C.A., 1988, A proposed advanced storm $spotter^{\circ}Os$ training program. Preprints, 15th Conference on Severe Local Storms, Baltimore, American Meteorological Society, Boston, 173-177.
  24. Murakami, M., 1990, Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud - The 19 July 1981 CCOPE cloud. Journal of the Meteorological Society of Japan, 68, 107-128. https://doi.org/10.2151/jmsj1965.68.2_107
  25. Murakami, M., Clark, T.L., and Hall, W.D., 1994, Numerical simulations of convective snow clouds over the Sea of Japan; Two-dimensional simulations of mixed layer development and convective snow cloud formation. Journal of the Meteorological Society of Japan, 72, 43-62. https://doi.org/10.2151/jmsj1965.72.1_43
  26. Orlanski, I., 1975, A rational subdivision of scales for atmospheric processes. Bulletin of the American Meteorological Society, 56, 527-530. https://doi.org/10.1175/1520-0477-56.5.527
  27. Rasmussen, E.N. and Blanchard, D.O., 1998, A baseline climatology of sounding-derived supercell and tornado forecasting parameters. Weather and Forecasting, 13, 1148-1164. https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2
  28. Rotunno, R. and Klemp, J.B., 1985, On the rotation and propagation of simulated supercell thunderstorms. Journal of the Atmospheric Sciences. 42(3). 271-292. https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2
  29. Segami, A., Kurihara, K., Nakamura, H., Ueno, M., Takano, I. and Tatsumi, y., 1989, Operational mesoscale weather prediction with Japan Spectral Model. Journal of the Meteorological Society of Japan, 67, 907-923. https://doi.org/10.2151/jmsj1965.67.5_907
  30. Sugawara, Y. and Kobayashi, F., 2008, Structure of a waterspout occurred over Tokyo bay on May 31, 2007. SOLA, 4, 1-4. https://doi.org/10.2151/sola.2008-001
  31. Tsuboki, K. and Sakakibara, A., 2002, Large-scale parallel computing of cloud resolving storm simulator. High Performance Computing, Springer, berlin, 243-259.
  32. Walko, R.L., 1993, Tornado spin-up beneath a convective cell: required basic structure of the near-field boundary layer winds. The tornado: Its structure, dynamics, prediction, and hazards. Geophysical Monograph Series American Geophysical Union, 79, 89-95.