• Title/Summary/Keyword: 이력선도

Search Result 128, Processing Time 0.024 seconds

Evaluation of the Numerical Liquefaction Model Behavior with Drainage Condition (배수조건에 따른 액상화 수치모델의 거동평가)

  • Lee, Jin-Sun;Kim, Seong-Nam;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.63-74
    • /
    • 2019
  • Numerical liquefaction model and response history analysis procedure are verified based on dynamic centrifuge test results. The test was a part of the Liquefaction Experiments Analysis Project (LEAP). The model ground was formed inside of rigid box by using the submerged Ottawa F65 sand with a relative density of 55% and 5° of surface inclination. A tapered sinusoidal wave with a frequency of 1 Hz was applied to the base of the model box. Numerical analyses were performed by two dimensional finite difference method in prototype scale. The soil is modeled to show hysteretic behavior before shear failure, and Mohr-Coulomb model is applied for shear failure criterion. Byrne's liquefaction model was applied to track the changes in pore pressure due to cyclic loading after static equilibrium. In order to find an appropriate flow condition for the liquefaction analysis, numerical analyses were performed both in drained and undrained condition. The numerical analyses performed under the undrained condition showed good agreement with the centrifuge test results.

Verification of Nonlinear Numerical Analysis for Seismic Response of Single Degree of Freedom Structure with Shallow Foundation (비선형 수치해석을 통한 단자유도 얕은기초 구조물의 지진 응답특성 검증)

  • Choo, Yun-Wook;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.29-40
    • /
    • 2013
  • Seismic response of single degree of freedom system supported by shallow foundation was analyzed by using nonlinear explicit finite difference element code. Numerical analysis results were verified with dynamic centrifuge test results of the same soil profile and structural dimensions with the numerical analysis model at a centrifugal acceleration of 20 g. Differences between the analysis and the test results induced by the boundary conditions of control points can be reduced by adding additional local damping to the natural born cyclic hysteretic damping of the soil strata. The analysis results show good agreement with the test results in terms of both time histories and response spectra. Thus, it can be concluded that the nonlinear explicit finite difference element code will be a useful technique for estimating seismic residual displacement, earthpressure etc. which are difficult to measure during laboratory tests and real earthquake.

Effect of UV-Absorber Treatment on the Mechanical Properties of Cotton Fabrics (자외선 차단 가공에 의한 면직물의 역학적 특성 변화)

  • Kwon, Young-Ah;Kang, Mi-Jung;Cho, Hyun-Hok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.12
    • /
    • pp.1701-1708
    • /
    • 2002
  • 본 연구의 목적은 자외선 차단 가공 처리 및 자외선 조사처리에 의해 면직물의 역학적 특성 변화를 조사하고 가공제 처리조건에 따른 차이점을 분석하는 것이다. 시료로는 100% 면직물을, 자외선 흡수제로 2,2'-dihydroxy-4,4'-dimethoxy benzophenone을, 첨가제로 Triton X-100, polyethylene glycol 400, MgCl$_2$.6$H_2O$를 사용하였다. 자외선 흡수제 처리는 Atlas Launder-O-meter로 75$^{\circ}C$에서 60분간 흡진법으로 하였다. 미처리 시료 및 처리시료는 모두 xenon 램프에 80시간 동안 노출되었으며, 자외선 조사 전후 시료의 역학적 특성은 KES-F시스템을 사용하여 측정하였다. 본 연구의 결과는 다음과 같이 요약할 수 있다. 자외선 흡수제 처리는 처리 농도에 상관없이 면직물의 선형인장성(LT), 인장레질리언스(RT), 굽힘강성(B), 굽힘이력(2HB), 전단강성(G), 전단이력(2HG5), 표면마찰계수(MIU)등을 증가시켰으며 표면거칠기(SMD)는 감소시켰다. 압축특성은 처리농도의 영향을 받아서 고농도의 자외선 흡수제 처리는 압축특성을 감소시켰으며, 저농도의 처리는 압축특성을 증가시켰다. 자외 선 흡수제 처리는 처리농도에 상관없이 면직물의 fullness/softness를 유의하게 증가시키는 반면 stiffness, crispness및 anti-drape stiffness를 감소시켜서 가공포의 종합태(THV)는 가공 전에 비하여 저하하였다. 자외선 조사는 가공 전 면직물의 경우 B, 2HB, G, 2HG, 2HG5, LC를 감소시켰다. 자외선 조사는 처리농도와 상관없이 가공포의 WT, 굽힘특성 , 전단특성을 감소시켰으며, 저농도의 흡수제 처리포의 경우 SMD를 증가시켰으며, 고농도의 흡수제 처리포의 경우 SMD를 감소시켰다. 자외선 조사는 처리농도와 상관없이 가공포의fullness/softness, stiffness, anti-drape stiffness를 유의하게 감소시켜서 자외선 조사 전 보다 THV가 37% 저하하였고 미 가공포의 THV를 저하율보다는 저하가 낮았다. 자외선 흡수제 처리에 의해 면직물의 태는 가공 전보다 감소하지만, 자외선 흡수제 처리는 자외선 조사에 의한 태 감소율을 낮추는 데 유의 한 효과가 있다.

Mössbauer Study of AIFeO3 (AIFeO3 물질의 Mössbauer 분광학적 연구)

  • We, Jee-Hoon;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.14-17
    • /
    • 2006
  • [ $AIFeO_3$ ]has been studied by x-ray diffraction (XRD), vibrating sample magnetometer, Mossbauer spectroscopy. The crystal structure is found to orthorhombic with the lattice parameters being $a_0=4.983\;{\AA},\;b_0=8.554\;{\AA},\;c_0=9.239\;{\AA}$, Magnetic hysteresis curve for $AIFeO_3$ showed weakly ferromagnetic phase at room temperature and a asymmetric shape dependent on the direction of applied field at low temperature. The Curie temperature determined by the temperature dependence of magnetization is 250 K. Mossbauer spectra of $AIFeO_3$ have been taken from 4.2 K to 295 K. Isomer shift at room temperature are found to be $0.11\~0.32\;mm/s$, which is consistent with ferric state. The absorption lines widths become broader with increasing temperature, which is attributed to the Fe ions distribution of each cation site and anisotropy energy difference of each sublattice.

Verification of the Seismic Performance Evaluation Methods for Enclosure Dam (기존 방조제의 내진성능평가 방법 검증)

  • Kim, Kwangjoon;Kim, Hyunguk;Kim, Sung-Ryul;Lee, Jinsun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.5
    • /
    • pp.19-33
    • /
    • 2022
  • Newmark's sliding block analysis is the most commonly used method for predicting earthquake-induced permanent displacement of embankment slopes. Additionally, it yields the amount of slip circle sliding using the limit equilibrium theory. Thus, permanent displacement does not occur until the seismic load exceeds the yield acceleration, which induces sliding of the slip circle. The evolution of Newmark's sliding block analysis has been made by introducing the numerical seismic response analysis results since it was introduced. This study compares seismic performance evaluation results for the example enclosure dam section with the analysis methods. As a result, earthquake-induced permanent displacement using Newmark's sliding block analysis did not occur for the enclosure dam, indicating a high safety factor. However, nonlinear response history analysis gave reasonable results.

Evaluation of Liquefaction Model using Dynamic Centrifuge Test (포화된 경사 사질토 지반의 액상화 수치모델 거동평가)

  • Lee, Jin-Sun;Lee, Sang-Un
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.31-42
    • /
    • 2022
  • This study verified numerical analysis of the liquefaction phenomenon using LEAP-2017 international round-robin centrifuge test results. Dynamic centrifuge test is performed by applying a 1 Hz tapered sine wave to the model soil deposit, which was formed under a water table in a surface slope of 5° using Ottawa F-65 sand. A numerical model was made on a prototype scale and analyzed using the finite difference method in 2D and 3D conditions. The analyses were verified for acceleration and pore-water pressure histories with depth and residual displacement. Verification results revealed that all numerical liquefaction models agree reasonably with the test result for acceleration histories but not for pre-water pressure histories. Numerical analyses showed much smaller residual displacement than the centrifuge test. Thus, it is necessary to compare the results of numerical analysis with the centrifuge test performed by other institutes in the future.

Development of AI Image Analysis Emergency Door Opening and Closing System linked Wired/Wireless Counting (유무선 카운팅 연동형 AI 영상분석 비상문 개폐 시스템 개발)

  • Cheol-soo, Kang;Ji-yun, Hong;Bong-hyun, Kim
    • Journal of Digital Policy
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • In case of a dangerous situation, the roof, which serves as an emergency exit, must be open in case of fire according to the Fire Act. However, when the roof door is opened, it has become a place of various incidents and accidents such as illegal entry, crime, and suicide. As a result, it is a reality to close the roof door in terms of facility management to prevent crime, various incidents, and accidents. Accordingly, the government is pushing to legislate regulations on housing construction standards, etc. that mandate the installation of electronic automatic opening and closing devices on rooftop doors. Therefore, in this paper, an intelligent emergency door opening/closing device system is proposed. To this end, an intelligent emergency door opening and closing system was developed by linking wired and wireless access counting and AI image analysis. Finally, it is possible to build a wireless communication-based integrated management platform that provides remote control and history management in a centralized method of device status real-time monitoring and event alarm.

J2-bounding Surface Plasticity Model with Zero Elastic Region (탄성영역이 없는 J2-경계면 소성모델)

  • Shin, Hosung;Oh, Seboong;Kim, Jae-min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.469-476
    • /
    • 2023
  • Soil plasticity models for cyclic and dynamic loads are essential in non-linear numerical analysis of geotechnical structures. While a single yield surface model shows a linear behavior for cyclic loads, J2-bounding surface plasticity model with zero elastic region can effectively simulate a nonlinearity of the ground response with the same material properties. The radius of the yield surface inside the boundary surface converged to 0 to make the elastic region disappear, and plastic hardening modulus and dilatancy define plastic strain increment. This paper presents the stress-strain incremental equation of the developed model, and derives plastic hardening modulus for the hyperbolic model. The comparative analyses of the triaxial compression test and the shallow foundation under the cyclic load can show stable numerical convergence, consistency with the theoretical solution, and hysteresis behavior. In addition, plastic hardening modulus for the modified hyperbolic function is presented, and a methodology to estimate model variables conforming 1D equivalent linear model is proposed for numerical modeling of the multi-dimensional behavior of the ground.

Investigation of Fatigue Damage of the Mooring Lines for Submerged Floating Tunnels Under Irregular Waves (불규칙 파랑 중 해중 터널 계류선의 단기 피로 손상 분석)

  • Kim, Seungjun;Won, Deok Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.49-60
    • /
    • 2017
  • As well as the strength check, fatigue life check is also mainly required for designing mooring lines of the floating structures. In general, forces which induce dynamic structural response significantly affect to fatigue design of the mooring lines. So, waves are mainly considered as the governing loading for fatigue design of the mooring lines. In this study, characteristics of the fatigue damage of the mooring lines for submerged floating tunnels (SFT) under irregular waves are investigated. For this study time domain hydrodynamic analysis is used to obtain motion of the tunnel and tension and stresses of the mooring lines under the specific environmental conditions. Also, the Rainflow-counting method, the Palmgren-Miner's rule, and S-N curves for floating offshore structures presented by DNV recommendation is applied to calculate the fatigue damage due to the fluctuating stresses. Referring to the design plactice of the tendon pipes for TLP (tension-leg platform), which is very similar structural system to SFT, it is assumed that a 100 year return period wave attacks the SFT systems during 48 hours and the fatigue damages due to the environmental loading are calculated. Following the analysis sequence, the effects of the tunnel draft, spacing and initial inclination angle of the mooring lines on the fatigue damage under the specific environmental loadings are investigated.

Test of Independence Between Variables to Estimate the Frequency of Damage in Heat Pipe (열수송관 파손빈도 추정을 위한 변수간 독립성 검정)

  • Myeongsik Kong;Jaemo Kang;Sungyeol Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.61-67
    • /
    • 2023
  • Heat pipes located underground in urban areas and operated under high temperature and pressure conditions can cause large-scale human and economic damage if damaged. In order to predict damage in advance, damage and construction information of heat pipe are analyzed to derive independent variables that have a correlation with frequency of damage, and a simple regression analysis modified model using each variable is applied to the field. However, as the correlation between independent variables applied to the model increases, the independence between variables is harmed and the reliability of the model decreases. In this study, the independence of the pipe diameter, burial depth, insulation level of monitoring system, and disconnection or short circuit of the detection line, which are judged to be interrelated, was tested to derive a method for combining variables and setting categories necessary to apply to the frequency of damage estimation model. For the test of independence, the continuous variables pipe diameter and burial depth were each converted into three categories, insulation level of monitoring system was converted into two categories, and the categorical variable disconnection or short circuit of the detection line status was kept as two categories. As a result of the test of independence, p-value between pipe diameter and burial depth, level of monitoring system and disconnection or short circuit of the detection line was lower than the significance level (α = 0.05), indicating a large correlation between them. Therefore, the pipe diameter and burial depth were combined into one variable, and the categories of the combined variable were set to 9 considering the previously set categories. The insulation level of monitoring system and the disconnection or short circuit of the detection line were also combined into one variable. Since the insulation level is unreliable when the detection line status is disconnection or short circuit, the categories of the combined variable were set to 3.