• Title/Summary/Keyword: 이러닝 e-프로젝트 학습

Search Result 16, Processing Time 0.022 seconds

A study on the Change of University Education Based on Fliped Learning Using AI (AI 쳇봇을 활용한 플립러닝 기반의 대학교육의 변화)

  • Kim, Ock-boon;Cho, Young-bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1618-1624
    • /
    • 2018
  • The undergraduate structure based on flipped learning should be a necessary course to cultivate value creation capability based on students' problem solving capability through the change of university education in the fourth industrial revolution era. Flipped learning stimulated the learner's high order thinking and activates communication between the faculty-student and the students through the use of activity oriented teaching strategy. Introduction and spread of Flipping Learning combining project-based learning with MOOC is required. The professor should be able to apply net teaching and learning methods using flipping learning and active learning, and develop class contents reflecting new knowledge, information and technology. As the introduction and spread of AI-based(E-Advisor, chat bot et al) learning consulting, Which is becoming increasingly advanced, the transition to "personalized education" that meets the 4th Industrial Revolution should be made.

Application of Flipped Learning in Database Course (데이터베이스 교과목에서 플립러닝 적용 사례)

  • Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.847-856
    • /
    • 2016
  • Flipped learning is a pedagogic model in which the typical lecture and homework elements of a course are reversed. Short video lectures or e-learning contents or other learning materials are viewed by students at home before the in-class session, while students are mainly carried out diverse active learning activities such as the discussions, exercises, team projects and so on in class time. Recently flipped learning has been emerging as an effective teaching-learning method that can train the 21st century talents who can create creative values based on fusion competencies. Based on the experience in applying the flipped learning to the database class that is an elective course of the school of computer engineering through three semesters, this paper proposes a flipped learning model consists of 7 steps in detail. Also, this paper analyzes the effects and weak points of the flipped learning and proposes several things for the successful flipped learning application.

Photographic Virtual Reality-based Education Systems for Cultural Property Learning (문화재 학습을 위한 PVR 기반 교육 시스템)

  • Han, Seon-Kwan;Yoon, Kyoung-Nam
    • Journal of The Korean Association of Information Education
    • /
    • v.13 no.2
    • /
    • pp.159-168
    • /
    • 2009
  • This study is a project case research on PVR-based e-book systems for the cultural property learning effectively. In this study, we designed and implemented the systems and contents using a photographic virtual reality technique. This system could provide the students an effectiveness of virtual experience such as a student is at place that has the cultural property. Moreover we developed the educational contents in image DB. We also converted these contents into e-book typed contents that the students easily searched and used the system in class. This systems were applied the students in elementary school. As the result of applying, we found that the PVR-based e-book systems were more effective than plain web-based systems. This study will give advanced education environment to students as well as teachers in future.

  • PDF

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

A Development of Kolb's Learning Style Based Team Organization Support System (Kolb의 학습양식에 기반 한 팀 조직 지원 시스템 개발)

  • Park, Su-Hong;Jung, Ju-Young;Hong, Jin-Yong;Kim, Seong-Ok;Ryu, Young-Ho;Kang, Eun-Kyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.12 no.1
    • /
    • pp.9-22
    • /
    • 2008
  • The purpose of this research is to develop a prototype of the support system in order for team building associated with web-based project learning having applied Kolb's learning style. To accomplish this purpose, the following research tasks were performed. First, core idea in order to embody the system's value, key activities, tools that will support pertinent activities and the strategy so as to develop guidelines, etc. were devised and prepared. Second, a system was designed on the basis of structural model of teaching design, then after, interface was developed. The core factors in this system are inspection of learning style, organizing a team and team building. Above all, it is required to make learners know about learning environments, of which they are in favor, and also its distinctive features through inspection of learning style, and then focusing on learning style, a team should be organized insomuch as to accommodate a variety of learning styles as much as possible. For the purpose of team building, after learning style of each constituent member of the team has been made known, then the roles will be divided among the constituent members of the team so as to suit their individual characteristics referring to each of their learning styles that have been exposed. To verify the value of this system developed and efficiency thereof, a focus group interview was conducted. The focus group consisted of professionals, all from related fields. After the interview, the points required to make further improvements were elicited and taken care of by follow-up actions as needed. And having reflected such improvements made, the final system was developed. With this newly developed system, learners can get the results of inspection of learning style so quickly by performing inspection any time any where, and based on the results from such inspection, a team comprising dissimilar constituents who exhibit a variety of different propensities will be automatically organized. Thus, this system may be used not only for web-based project learning having unspecified persons elected as constituents, but in the offline space also.

  • PDF

A model for enhancing the academic excellence of adult college students (성인대학생의 학업수월성 강화를 위한 모형)

  • Kim, Eun Young;Kim, Jin Sook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.195-200
    • /
    • 2019
  • The purpose of this study is to present a model for enhancing the academic excellence of adult college students. For this purpose, 408 adult college students attending 2-year and 4-year colleges in Busan, Daegu, and Gyeongbuk were surveyed and analyzed. The components of the model are curriculum, educational methods, evaluation of education, educational administration, educational environment, and institutional support and the results are as follows. First, the curriculum preferred by adult college students was to acquire diverse academic knowledge for a degree, to acquire knowledge and skills to develop skills for the workplace, and to acquire new information and knowledge regarding issues in society as a whole. Second, the professors' qualification among the educational methods preferred by adult college students was professional competence of the professors based on their theoretical and practical skills. The preferred teaching methods were lecture, discussion, action learning, and the project learning method in that order and video and PowerPoint were preferred as effective teaching mediums. Third, the preferred course for adult college students is operated on weekends, and three years was preferred to get a bachelor's degree. The possible hours of learning per day is 3~6 hours, indicating the necessity of e-learning, B-learning, and prior learning experience recognition systems. Fourth, the education evaluation method preferred by adult college students was a compromise method which is a mixture of absolute evaluation and relative evaluation, and it also showed the need for Pass or Non Pass evaluation method. Fifth, the internal factors of college selection preferred by adult college students were the acquisition of new knowledge and skills, and the external factors were desire to receive many opportunities related to employment and job improvement. The classroom, which provides an effective environment, was a fixed seat classroom and an indoor classroom environment was emphasized for desired educational environment. Sixth, institutional support preferred by adult college students was computer-related programs and learning club support services.