• Title/Summary/Keyword: 의사 결정

Search Result 8,026, Processing Time 0.043 seconds

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.

Research for Space Activities of Korea Air Force - Political and Legal Perspective (우리나라 공군의 우주력 건설을 위한 정책적.법적고찰)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.18
    • /
    • pp.135-183
    • /
    • 2003
  • Aerospace force is a determining factor in a modem war. The combat field is expanding to space. Thus, the legitimacy of establishing aerospace force is no longer an debating issue, but "how should we establish aerospace force" has become an issue to the military. The standard limiting on the military use of space should be non-aggressive use as asserted by the U.S., rather than non-military use as asserted by the former Soviet Union. The former Soviet Union's argument is not even strongly supported by the current Russia government, and realistically is hard to be applied. Thus, the multi-purpose satellite used for military surveillance or a commercial satellite employed for military communication are allowed under the U.S. principle of peaceful use of space. In this regard, Air Force may be free to develop a military surveillance satellite and a communication satellite with civilian research institute. Although MTCR, entered into with the U.S., restricts the development of space-launching vehicle for the export purpose, the development of space-launching vehicle by the Korea Air Force or Korea Aerospace Research Institute is beyond the scope of application of MTCR, and Air Force may just operate a satellite in the orbit for the military purpose. The primary task for multi-purpose satellite is a remote sensing; SAR sensor with high resolution is mainly employed for military use. Therefore, a system that enables Air Force, the Korea Aerospace Research Institute, and Agency for Defense Development to conduct joint-research and development should be instituted. U.S. Air Force has dismantled its own space-launching vehicle step by step, and, instead, has increased using private space launching vehicle. In addition, Military communication has been operated separately from civil communication services or broadcasting services due to the special circumstances unique to the military setting. However, joint-operation of communication facility by the military and civil users is preferred because this reduces financial burden resulting from separate operation of military satellite. During the Gulf War, U.S. armed forces employed commercial satellites for its military communication. Korea's participation in space technology research is a little bit behind in time, considering its economic scale. In terms of budget, Korea is to spend 5 trillion won for 15 years for the space activities. However, Japan has 2 trillion won annul budget for the same activities. Because the development of space industry during initial fostering period does not apply to profit-making business, government supports are inevitable. All space development programs of other foreign countries are entirely supported by each government, and, only recently, private industry started participating in limited area such as a communication satellite and broadcasting satellite, Particularly, Korea's space industry is in an infant stage, which largely demands government supports. Government support should be in the form of investment or financial contribution, rather than in the form of loan or borrowing. Compared to other advanced countries in space industry, Korea needs more budget and professional research staff. Naturally, for the efficient and systemic space development and for the prevention of overlapping and distraction of power, it is necessary to enact space-related statutes, which would provide dear vision for the Korea space development. Furthermore, the fact that a variety of departments are running their own space development program requires a centralized and single space-industry development system. Prior to discussing how to coordinate or integrate space programs between Agency for Defense Development and the Korea Aerospace Research Institute, it is a prerequisite to establish, namely, "Space Operations Center"in the Air Force, which would determine policy and strategy in operating space forces. For the establishment of "Space Operations Center," policy determinations by the Ministry of National Defense and the Joint Chief of Staff are required. Especially, space surveillance system through using a military surveillance satellite and communication satellite, which would lay foundation for independent defense, shall be established with reference to Japan's space force plan. In order to resolve issues related to MTCR, Air Force would use space-launching vehicle of the Korea Aerospace Research Institute. Moreover, defense budge should be appropriated for using multi-purpose satellite and communication satellite. The Ministry of National Defense needs to appropriate 2.5 trillion won budget for space operations, which amounts to Japan's surveillance satellite operating budges.

  • PDF

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.

Analysis of the Perception of Hospice and Narcotic Analgesics by Family Caregivers of Terminal Cancer Patient (말기 암 환자 보호자의 호스피스와 마약성 진통제에 대한 인식도 분석)

  • Kwak, Kyung-Sook;Chun, Sung-Ho;Ha, Jung-Ok;Lee, Kyung-Hee
    • Journal of Hospice and Palliative Care
    • /
    • v.9 no.2
    • /
    • pp.106-111
    • /
    • 2006
  • Purpose: In terminal cancer patients, pain control with narcotic analgesics and supportive care by hospice are very useful treatment modality. However, many patients and their caregivers are poorly compliant in using narcotic analgesics for fear of addiction and tolerance. And also many patients and family caregivers are reluctant to accept hospice, presuming that hospice means patient's condition is no longer reversible and progressively deteriorating. The purpose of this study was to evaluate and analyze the perception of using narcotic analgesics and hospice by family caregivers of terminal cancer patients who play a critical role in health care in Korean culture. Methods: A total of 54 terminal ranter patient's family caregivers participated in this study. Questionnaire consisted of 15 questions about narcotic analgesics and hospice. Results: The study revealed following results. 1) family caregivers who are not aware of hospice are more than half (56.7%). 2) 81.8% of family caregivers agreed that hospice care is beneficial to terminal cancer patients. 3) 85.1% of family caregivers were under financial burden. 4) 83.2% of patient complained pain in 24 hours. 3) while 88.5% of family caregivers believed that narcotic analgesics can control pair, 79.1% and 79.6% of them also believed that use of narcotic analgesics would result in addiction and tolerance, respectively. Conclusion: There still exist barriers to family caregivers in using narcotic analgesics for pain control. And also, terminal cancer patient's family caregivers have poor information about hospice. Therefore, educational intervention about narcotic analgesics by pharmacist and doctors are needed for proper pain control for terminal ranter patients. In addition, more precise information about hospice care should be provided for terminal cancer patients and their family caregivers.

  • PDF

Relationship between Radiation and Yield of Sweet Pepper Cultivars (광량과 파프리카 품종에 따른 수량과의 상호관계)

  • Myung, Dong Ju;Bae, Jong Hyang;Kang, Jong Goo;Lee, Jeong Hyun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.243-246
    • /
    • 2012
  • The study was aimed at the development of the simple linear regression model to estimate the fruit yield of sweet pepper and to support decision-making management for growing sweet pepper crop in Korea. For quantitative analysis of relationship between environmental data and periodical yield of sweet pepper the data obtained from the commercial Venlo-type glasshouse for 2 years. Obtained periodical yield data of five different cultivars and radiation data were accumulated and fitted by linear regression. A significant linear relationship was found between radiation integral and fruit yield, whereas the production per unit of radiation was different between cultivars. The slope of linear regression could indicate as light use efficiency for fruit production ($LUE_F$, $g{\cdot}MJ^{-1}$). $LUE_F$ of 'Ferrari' was $5.85g{\cdot}MJ^{-1}$, 'Fiesta' 5.32 for first year and $4.75g{\cdot}MJ^{-1}$ and for second year, 'President' was $4.66g{\cdot}MJ^{-1}$, 'Cupra' was $3.86g{\cdot}MJ^{-1}$, and 'Boogie' was $6.48g{\cdot}MJ^{-1}$. The amount of light requirement for the unit gram of fruit was between $25.88J{\cdot}g^{-1}$, for 'Cupra' and $15.42J{\cdot}g^{-1}$ for 'Boogie'. Although we found the linear relationship between radiation and fruit yield, $LUE_F$ was varied between cultivars and as well as year. The linear relationship could describe the fruit yield as function of radiation, but it needed more variable to generalization of the production, such as cultivar specifications, temperature, and number of fruits set per plant or unit of ground.

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

A Study on the Improvement of Technology Balance of Payments to Enhance Global Technology Competitiveness in Korea: Based on the Surveys regarding Perception and Current State of Industry (우리나라의 글로벌 기술경쟁력 제고를 위한 기술무역수지 개선방안 연구: 산업계 인식 및 실태조사를 중심으로)

  • Lee, Jongmin;Noh, Meansun
    • Journal of Technology Innovation
    • /
    • v.23 no.4
    • /
    • pp.1-31
    • /
    • 2015
  • Korea has continuously increased investment on R&D to improve global technology competitiveness through technology innovation. Korea's R&D expenditure as a percent of GDP is world's No. 1 as 4.15 and it accomplished 1 trillion won trade volume for 4 consecutive years. However, despite these efforts, technology balance of payment, which is an important factor that can measure nation's technology competitiveness is in a state of chronic deficit and the lowest level among OECD countries. In this paper, we studied methods to improve Korea's technology balance of payment We figured out concept and current state of technology trade and examined the importance of technology trade through making a comparison between commodity trade and technology trade. There have been studies regarding technology trade, but there was no study which tried to figure out cognition on technology trade from the point of view of companies which plays an important role in technology trade. For this, this study distinguished companies with experience in technology trade and which have not and conducted a survey to figure out cognition and current state of companies. The survey result showed noticeable difference on cognition of top decision makers between companies with experience in technology trade and which have not and there are serious shortage in department and staff which is exclusively responsible for technology trade. Also, despite their needs for education regarding technology trade, the ratio of employees who received education is below 10 % of the total respondents. This study suggested improvement methods such as reforming survey methods of technology trade statistics, enhancing social cognition, supporting to vitalize technology export, building infrastructure regarding technology trade, and opening education programs for cultivating experts based on preceding research and industry survey.

The Study of Metrics development for Entrepreneurial Program Effectiveness (청소년 창업교육프로그램 효과성 측정지표 개발 연구)

  • Byun, Youngjo;Kim, Myung Seuk;Yang, Young Seok
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.9 no.4
    • /
    • pp.77-85
    • /
    • 2014
  • A goal of Bizcool entrepreneurship education targeting on the youth falls on letting understand the process of starts-up, enhance entrepreneurship will and their business creativities rather than training trivial starts-up skills such as writing business plan for successful starts-up. The effects of education enable Bizcoo students to recognize rightly the concept of starts-up training and lead to spread out demand for entrepreneurship education. The feedback check-up for how entrepreneurship education affects students getting through of it is necessary and possible to bring its' improvement alternatives. Despite of such highlight, not many measuring tools and indexes of evaluating an effectiveness of entrepreneurship education are developed and studied up until. This research suggests for the optimal indexes for them. In specific, this research 49 the first question sets of evaluating an effectiveness of entrepreneurship education classified 3 large categories and 11 following sub categories each of them such as entrepreneurship orientation, creativity, entrepreneurship preparing activities etc,. representing embedding education effects though entrepreneurship education. This research carry out the empirical survey research utilizing driven question sets against 5 different Bizcools sampling 287 students. The survey research delivers the final 3 large categories and 8 following sub categories(Innovativeness, risk-taking, problem-solving potent, cooperative decision-making potent, efficient behavior capacity, data collecting potent, career search, starts-up search and preparation), and 38 measuring indexes by search and confirming factor analysis. This research never drop the confidence test over each indexes and obtain the proper figures. Last but not least, this research confirm the gap between starts-up club members and non members as to an effectiveness of entrepreneurship education and 9 different indexes.

  • PDF

Association between Critical Thinking Disposition and Grade Point Average Score in Dental Hygiene Students (치위생(학)과 학생의 학업성적에 따른 비판적 사고 성향)

  • Hwang, Hye-Rim;Kim, Eung-Kwon;Cho, Young-Sik
    • Journal of dental hygiene science
    • /
    • v.12 no.1
    • /
    • pp.7-13
    • /
    • 2012
  • Critical thinking is a essential competency for dental hygiene education and practice. The purpose of this study was to examine critical thinking disposition between groups classified by GPA score in two dental hygiene educational program. A total 252 dental hygiene students responded. The study extracted six dimensions(intellectual eagerness/curiosity, prudence, healthy skepticism, intellectual integrity, objectivity, self-confidence) derived from 27 items with the exception of systematicity using factor analysis. The mean score for critical thinking disposition was 3.47 on a 5 point scale. The result showed a statistically significant correlation critical thinking disposition and age. Multivariate analysis of covariance(MANCOVA) was used to compare six subscales between the three groups. MANCOVA results revealed that intellectual eagerness/curiosity for three groups were significantly different(Wilks's lamda=0.914, F(6, 24)=1.869), p=0.01, partial eta square=0.044). Multiple comparison for intellectual eagerness/curiosity by Scheffe's method showed differences between high score group and mid score group(p=0.027), high score group and low score group(p=0.002). In this study, academic achievement and critical thinking tends to show significant correlations is known. Critical thinking skills by examining the actual grade compares the difference in propensity scores according to a case study in intellectual curiosity, passion, and could tell the difference to appear.

A Case Study on Implementation of Mobile Information Security (모바일 정보보안을 위한 실시간 모바일 기기 제어 및 관리 시스템 설계.구현 사례연구)

  • Kang, Yong-Sik;Kwon, Sun-Dong;Lee, Kang-Hyun
    • Information Systems Review
    • /
    • v.15 no.2
    • /
    • pp.1-19
    • /
    • 2013
  • Smart working sparked by iPhone3 opens a revolution in smart ways of working at any time, regardless of location and environment. Also, It provide real-time information processing and analysis, rapid decision-making and the productivity of businesses, including through the timely response and the opportunity to increase the efficiency. As a result, every company are developing mobile information systems. But company data is accessed from the outside, it has problems to solve like security, hacking and information leakage. Also, Mobile devices such as smart phones belonging to the privately-owned asset can't be always controlled to archive company security policy. In the meantime, public smart phones owned by company was always applied security policy. But it can't not apply to privately-owned smart phones. Thus, this paper is focused to archive company security policy, but also enable the individual's free to use of smart phones when we use mobile information systems. So, when we use smart phone as individual purpose, the normal operation of all smart phone functions. But, when we use smart phone as company purpose like mobile information systems, the smart phone functions are blocked like screen capture, Wi-Fi, camera to protect company data. In this study, we suggest the design and implementation of real time control and management of mobile device using MDM(Mobile Device Management) solution. As a result, we can archive company security policy and individual using of smart phone and it is the optimal solution in the BYOD(Bring Your Own Device) era.

  • PDF