This study proposes an evaluation item model for the avatar expression process, satisfaction and self-identification for each expression element in order to investigate the expression attributes on the influence on the user in setting the avatar. The evaluation of avatar expression method was composed of self-identification and satisfaction by ease of expression and expression elements on the avatar production and expression process. To evaluate the proposed evaluation model, 17 people participated in the experiment. As a result, it was found that most of the participants had a high level of understanding of the production process, and the more diverse the expression elements, the higher the satisfaction with the avatar expression process. Hair shape and face shape were the most important expression factors, and clothes and overall harmony was the most concerned facotrs. Most of them tried to express themselves as realistically as possible. However, in self-identification, there was no significant correlation between expression and production process. In this study identify the decision-making factors that appear in the avatar expression process, the direction in which satisfaction can be formed, and the factors that affect self-identification. In addition, it will be a basic study on how avatars have a lasting influence on users in the future.
Park, Sungwoo;Jung, Seungmin;Moon, Jaeuk;Hwang, Eenjun
KIPS Transactions on Software and Data Engineering
/
v.11
no.8
/
pp.339-346
/
2022
Recently, the resource depletion and climate change problem caused by the massive usage of fossil fuels for electric power generation has become a critical issue worldwide. According to this issue, interest in renewable energy resources that can replace fossil fuels is increasing. Especially, photovoltaic power has gaining much attention because there is no risk of resource exhaustion compared to other energy resources and there are low restrictions on installation of photovoltaic system. In order to use the power generated by the photovoltaic system efficiently, a more accurate photovoltaic power forecasting model is required. So far, even though many machine learning and deep learning-based photovoltaic power forecasting models have been proposed, they showed limited success in terms of interpretability. Deep learning-based forecasting models have the disadvantage of being difficult to explain how the forecasting results are derived. To solve this problem, many studies are being conducted on explainable artificial intelligence technique. The reliability of the model can be secured if it is possible to interpret how the model derives the results. Also, the model can be improved to increase the forecasting accuracy based on the analysis results. Therefore, in this paper, we propose an explainable photovoltaic power forecasting scheme based on BiLSTM (Bidirectional Long Short-Term Memory) and SHAP (SHapley Additive exPlanations).
KIPS Transactions on Computer and Communication Systems
/
v.11
no.8
/
pp.249-258
/
2022
Since the advent of Bitcoin, various virtual assets have been actively traded through virtual asset services of virtual asset exchanges. Recently, security accidents have frequently occurred in virtual asset exchanges, so the government is obligated to obtain information security management system (ISMS) certification to strengthen information protection of virtual asset exchanges, and 56 additional specialized items have been established. In this paper, we compared the domain importance of ISMS and CryptoCurrency Security Standard (CCSS) which is a set of requirements for all information systems that make use of cryptocurrencies, and analyzed the results after mapping them to gain insight into the characteristics of each certification system. Improvements for 4 items of High Level were derived by classifying the priorities for improvement items into 3 stages: High, Medium, and Low. These results can provide priority for virtual asset and information system security, support method and systematic decision-making on improvement of certified items, and contribute to vitalization of virtual asset transactions by enhancing the reliability and safety of virtual asset services.
Purpose: In the event of mass casualties, triage must be done promptly and accurately so that as many patients as possible can be recovered and returned to the battlefield. However, medical personnel have received many tasks with less manpower, and the battlefield for classifying patients is too complex and uncertain. Therefore, we studied an artificial intelligence model that can assist and replace medical personnel on the battlefield. Method: The triage model is presented using reinforcement learning, a field of artificial intelligence. The learning of the model is conducted to find a policy that allows as many patients as possible to be treated, taking into account the condition of randomly set patients and the medical capability of the military hospital. Result: Whether the reinforcement learning model progressed well was confirmed through statistical graphs such as cumulative reward values. In addition, it was confirmed through the number of survivors whether the triage of the learned model was accurate. As a result of comparing the performance with the rule-based model, the reinforcement learning model was able to rescue 10% more patients than the rule-based model. Conclusion: Through this study, it was found that the triage model using reinforcement learning can be used as an alternative to assisting and replacing triage decision-making of medical personnel in the case of mass casualties.
While the frequency of seismic occurrence has been increasing recently, the domestic seismic response system is weak, the objective of this research is to compare and analyze the seismic vulnerability of buildings using statistical analysis and machine learning techniques. As the result of using statistical technique, the prediction accuracy of the developed model through the optimal scaling method showed about 87%. As the result of using machine learning technique, because the accuracy of Random Forest method is 94% in case of Train Set, 76.7% in case of Test Set, which is the highest accuracy among the 4 analyzed methods, Random Forest method was finally chosen. Therefore, Random Forest method was derived as the final machine learning technique. Accordingly, the statistical analysis technique showed higher accuracy of about 87%, whereas the machine learning technique showed the accuracy of about 76.7%. As the final result, among the 22,296 analyzed building data, the seismic vulnerabilities of 1,627(0.1%) buildings are expected as more dangerous when the statistical analysis technique is used, 10,146(49%) buildings showed the same rate, and the remaining 10,523(50%) buildings are expected as more dangerous when the machine learning technique is used. As the comparison of the results of using advanced machine learning techniques in addition to the existing statistical analysis techniques, in spatial analysis decisions, it is hoped that this research results help to prepare more reliable seismic countermeasures.
Journal of the Korean Society of Marine Environment & Safety
/
v.28
no.7
/
pp.1267-1273
/
2022
Although the Korea shipbuilding industry has recently been receiving most of the orders for ships in the world, production processes are being disrupted due to a shortage of manpower at the production site. This is because the workers quit the shipyard as both work and wages were reduced due to the long slump in the shipbuilding industry. The main reason for the increase in orders was the large-scale orders for Qatar LNG carriers, and the situation in which the technical specifications required for ships are becoming more complex is also working to an advantage. Because the contract delivery time is of utmost importance for ships, the dock launch plan is the most important management item among the shipyard's major processes. The structure to be built in the dock may be a hull that has left the design work or a finished vessel, and in some cases, it is often at the level of some blocks of the hull. When launching, the hull is affected by the hogging or sagging moment due to the fluid force, and securing the safety of the structural strength of the block connection is of utmost importance. In a normal process, the connecting member launches after welding has been completed, but in actual shipbuilders, quick decision-making is needed on the conditions for securing structural safety to comply with the docking schedule. In this study, a detailed analysis method and applicability using a bending stress evaluation method and finite element analysis modelling were analyzed to rationally judge the above-mentioned problems from an engineering point of view. The main contents mentioned in the thesis can be used as good examples when conducting similar structural strength evaluations in the future.
As the online e-commerce market growing, the need for a recommender system that can provide suitable products or services to customer is emerging. Recently, many studies using the sentiment score of online review have been proposed to improve the limitations of study on recommender systems that utilize only quantitative information. However, this methodology has limitation in extracting specific preference information related to customer within online reviews, making it difficult to improve recommendation performance. To address the limitation of previous studies, this study proposes a novel recommendation methodology that applies deep learning technique and uses various linguistic factors within online reviews to elaborately learn customer preferences. First, the interaction was learned nonlinearly using deep learning technique for the purpose to extract complex interactions between customer and product. And to effectively utilize online review, cognitive contents, affective contents, and linguistic style matching that have an important influence on customer's purchasing decisions among linguistic factors were used. To verify the proposed methodology, an experiment was conducted using online review data in Amazon.com, and the experimental results confirmed the superiority of the proposed model. This study contributed to the theoretical and methodological aspects of recommender system study by proposing a methodology that effectively utilizes characteristics of customer's preferences in online reviews.
The objective of this study was to analyze the factors affecting the stages of change of exercise in middle-aged men who work. 170 middle-aged men who work surveyed, 40 to 59 years old, is residing, Chung-Buk and Chung-Nam province, who understand the purpose of this study and agree to participate in this study. This study data is analyzed by using frequency, percentage, standard deviation, t-test, 𝑥2 test and Logistic regression analysis. The study show that the exercise self-efficacy(𝛽=.965, p=.003) and the perceived health status(𝛽=.805, p=.025) among middle aged men who work have an effect on the stages of change of exercise meaningfully. That is, the exercise self-efficacy of middle aged men who work who have exercise behavior is 2.6 times higher than middle aged men at work who don't have exercise behavior, and the perceived health status is 2.2 times higher. This study suggests that the development of better exercise practice for middle aged men who work should be aimed at promoting exercise self-efficacy and perceived health status, Based on this, it is necessary to find ways to operate exercise programs at the workplace and community level.
In today's digital information society, student knowledge and skills to analyze big data and make informed decisions have become an important goal of school mathematics. Integrating big data statistical projects with digital technologies in high school <Artificial Intelligence> mathematics courses has the potential to provide students with a learning experience of high impact that can develop these essential skills. This paper proposes a set of guidelines for designing effective big data statistical project-based tasks and evaluates the tasks in the artificial intelligence mathematics textbook against these criteria. The proposed guidelines recommend that projects should: (1) align knowledge and skills with the national school mathematics curriculum; (2) use preprocessed massive datasets; (3) employ data scientists' problem-solving methods; (4) encourage decision-making; (5) leverage technological tools; and (6) promote collaborative learning. The findings indicate that few textbooks fully align with these guidelines, with most failing to incorporate elements corresponding to Guideline 2 in their project tasks. In addition, most tasks in the textbooks overlook or omit data preprocessing, either by using smaller datasets or by using big data without any form of preprocessing. This can potentially result in misconceptions among students regarding the nature of big data. Furthermore, this paper discusses the relevant mathematical knowledge and skills necessary for artificial intelligence, as well as the potential benefits and pedagogical considerations associated with integrating technology into big data tasks. This research sheds light on teaching mathematical concepts with machine learning algorithms and the effective use of technology tools in big data education.
In this study, daily data from January 2002 to June 2022 were used to investigate the relationship between risk-return relationship and market fear, uncertainty, stock market, and maritime freight index for the crude oil market. For this study, the time varying EGARCH-M model was applied to the risk-return relationship, and the wavelet consistency model was used to analyze the relationship between market fear, uncertainty, stock market, and maritime freight index. The analysis results of this study are as follows. First, according to the results of the time-varying risk-return relationship, the crude oil market was found to be related to high returns and high risks. Second, the results of correlation and Granger causality test, it was found that there was a weak correlation between the risk-return relationship and VIX, EPU, S&P500, and BDI. In addition, it was found that there was no two-way causal relationship in the risk-return relationship with EPU and S&P500, but VIX and BDI were found to affect the risk-return relationship. Third, looking at the results of wavelet coherence, it was found that the degree of the risk-return relationship and the relationship between VIX, EPU, S&P500, and BDI was time-varying. In particular, it was found that the relationship between each other was high before and after the crisis period (financial crisis, COVID-19). And it was found to be highly associated with organs. In addition, the risk-return relationship was found to have a positive relationship with VIX and EPU, and a negative relationship with S&P500 and BDI. Therefore, market participants should be well aware of economic environmental changes when making decisions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.