• Title/Summary/Keyword: 의사결정 지원시스템

Search Result 1,038, Processing Time 0.037 seconds

Multi-classification of Osteoporosis Grading Stages Using Abdominal Computed Tomography with Clinical Variables : Application of Deep Learning with a Convolutional Neural Network (멀티 모달리티 데이터 활용을 통한 골다공증 단계 다중 분류 시스템 개발: 합성곱 신경망 기반의 딥러닝 적용)

  • Tae Jun Ha;Hee Sang Kim;Seong Uk Kang;DooHee Lee;Woo Jin Kim;Ki Won Moon;Hyun-Soo Choi;Jeong Hyun Kim;Yoon Kim;So Hyeon Bak;Sang Won Park
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.187-201
    • /
    • 2024
  • Osteoporosis is a major health issue globally, often remaining undetected until a fracture occurs. To facilitate early detection, deep learning (DL) models were developed to classify osteoporosis using abdominal computed tomography (CT) scans. This study was conducted using retrospectively collected data from 3,012 contrast-enhanced abdominal CT scans. The DL models developed in this study were constructed for using image data, demographic/clinical information, and multi-modality data, respectively. Patients were categorized into the normal, osteopenia, and osteoporosis groups based on their T-scores, obtained from dual-energy X-ray absorptiometry, into normal, osteopenia, and osteoporosis groups. The models showed high accuracy and effectiveness, with the combined data model performing the best, achieving an area under the receiver operating characteristic curve of 0.94 and an accuracy of 0.80. The image-based model also performed well, while the demographic data model had lower accuracy and effectiveness. In addition, the DL model was interpreted by gradient-weighted class activation mapping (Grad-CAM) to highlight clinically relevant features in the images, revealing the femoral neck as a common site for fractures. The study shows that DL can accurately identify osteoporosis stages from clinical data, indicating the potential of abdominal CT scans in early osteoporosis detection and reducing fracture risks with prompt treatment.

A Comparative Study on the Effect of Enterprise SNS on Job Performance - Focused on the Mediation Effect of Communication Level and Moderating Effect of Nationality - (기업용 SNS 이용이 업무성과에 미치는 영향의 국가 간 비교연구 - 커뮤니케이션 수준의 매개효과와 국적의 조절효과를 중심으로 -)

  • Chen, Jing-Yuan;Kwon, Sun-Dong
    • Management & Information Systems Review
    • /
    • v.38 no.4
    • /
    • pp.137-157
    • /
    • 2019
  • Companies are trying to use enterprise SNS for collaboration and speedy decision-making. This study verified the mediating effect of communication between enterprise SNS and job performance, and proved the moderating effect of nationality between enterprise SNS and communication. This study collected survey data of 81 Korean and 81 Chinese from employees who have used enterprise SNS in Korea and China. As results of data analysis, first, enterprise SNS improved job performance through speedy information sharing and error reduction. Second, communication mediated the effect of enterprise SNS on job performance. Third, enterprise SNS increased the level of organizational communication through decreasing the burden of offline face-to-face communication. Compared with Chinese corporate organizations, Korean corporate organizations have high power distances, centralized control, and high superior authority. Therefore, in the off-line communication situation, the subordinate feels the social pressure to follow the command of the superior. Thus communication is one-way and closed. In this Korean organizational situation, corporate SNS can be used as a means to bypass rigid offline communication. In the online communication environment of non face-to-face corporate SNS, anxiety and stress of face-to-face communication can be reduced, so communication between the upper and lower sides can flow more smoothly. The contribution of this paper is that it proved that enterprise SNS promotes communication and improve job performance by reducing the anxiety or stress of offline communication, while according to prior research successful adoption of many types of information systems requires the fit between an organization and its organizational culture.

Analysis of the Weight of SWOT Factors of Korean Venture Companies Based on the Industry 4.0 (4차 산업혁명 기반 한국 벤처기업의 SWOT요인에 대한 중요도 분석)

  • Lee, Dongik;Lee, Sangsuk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.4
    • /
    • pp.115-133
    • /
    • 2021
  • This study examines the concept and related technologies of the 4th industrial revolution that has been mixed so far and examines the socio-economic changes and influences resulting from it, and the cases of responding to the 4th industrial revolution in major countries. Based on this, by deriving SWOT factors and calculating the importance of each factor for Korean venture companies to prepare for the forth industrial revolution, it was intended to help the government and policymakers in suggesting directions for establishing related policies. Furthermore, the purpose of this study was to suggest a direction for securing global competitiveness to Korean venture entrepreneurs and to help with basic and systematic analysis for further academic in-depth research. For this study, a total of 21 items derived through extensive literature research and data research to understand what are the necessary competency factors for internal and external environmental changes in order for Korean venture companies to have global competitiveness in the era of the 4th Industrial Revolution. After reviewing SWOT factors by three expert groups and confirming them through Delphi survey, the importance of each item was analyzed by using AHP, a systematic decision-making technique. As a result of the analysis, it was shown that Strength(48%), Opportunity(25%), Threat(16%), Weakness(11%) were considered important in order. In terms of sub-items, 'quick and flexible commercialization capability', 'platform/big data/non-face-to-face service activation', and 'ICT infrastructure and it's utilization' were shown to be of the comparatively high importance. On the other hand, in the lower three items, 'macro-economic stability and social infrastructure', 'difficulty in entering overseas markets due to global protectionism', and 'absolutely inferior in foreign investment' were found to have low priority. As a result of the correlation verification by item to see differences in opinions by industry, academia, and policy expert groups, there was no significant difference of opinion, as industry and academic experts showed a high correlation and industry experts and policy experts showed a moderate correlation. The correlation between the academic and policy experts was not statistically significant (p<0.01), so it was analyzed that there was a difference of opinion on importance. This was due to the fact that policy experts highly valued 'quick and flexible commercialization', which are strengths, and 'excellent educational system and high-quality manpower' and 'creation of new markets' which are opportunity items, while academic experts placed great importance on 'support part of government policy', which are strengths. The implication of this study is that in order for Korean venture companies to secure competitiveness in the field of the 4th industrial revolution, it is necessary to have a policy that preferentially supports the relevant items of strengths and opportunity factors. The difference in the details of strength factors and opportunity factors, which shows a high level of variability, suggests that it is necessary to actively review it and reflect it in the policy.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

The Study of Land Surface Change Detection Using Long-Term SPOT/VEGETATION (장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.111-124
    • /
    • 2010
  • To monitor the environment of land surface change is considered as an important research field since those parameters are related with land use, climate change, meteorological study, agriculture modulation, surface energy balance, and surface environment system. For the change detection, many different methods have been presented for distributing more detailed information with various tools from ground based measurement to satellite multi-spectral sensor. Recently, using high resolution satellite data is considered the most efficient way to monitor extensive land environmental system especially for higher spatial and temporal resolution. In this study, we use two different spatial resolution satellites; the one is SPOT/VEGETATION with 1 km spatial resolution to detect coarse resolution of the area change and determine objective threshold. The other is Landsat satellite having high resolution to figure out detailed land environmental change. According to their spatial resolution, they show different observation characteristics such as repeat cycle, and the global coverage. By correlating two kinds of satellites, we can detect land surface change from mid resolution to high resolution. The K-mean clustering algorithm is applied to detect changed area with two different temporal images. When using solar spectral band, there are complicate surface reflectance scattering characteristics which make surface change detection difficult. That effect would be leading serious problems when interpreting surface characteristics. For example, in spite of constant their own surface reflectance value, it could be changed according to solar, and sensor relative observation location. To reduce those affects, in this study, long-term Normalized Difference Vegetation Index (NDVI) with solar spectral channels performed for atmospheric and bi-directional correction from SPOT/VEGETATION data are utilized to offer objective threshold value for detecting land surface change, since that NDVI has less sensitivity for solar geometry than solar channel. The surface change detection based on long-term NDVI shows improved results than when only using Landsat.

A Study on Case for Localization of Korean Enterprises in India (인도 진출 한국기업의 현지화에 관한 사례 연구)

  • Seo, Min-Kyo;Kim, Hee-Jun
    • International Commerce and Information Review
    • /
    • v.16 no.4
    • /
    • pp.409-437
    • /
    • 2014
  • The purpose of this study is to present the specific ways of successful localization by analyzing the success and failures case for localization within the framework of the strategic models through a theoretical background and strategic models of localization. The strategic models of localization are divided by management aspects such as the localization of product and sourcing, the localization of human resources, the localization of marketing, the localization of R&D, harmony with a local community and delegation of authority between headquarters and local subsidiaries. The results, by comparing and analyzing the success and failures case for localization of individual companies operating in India, indicate that in terms of localization of product and sourcing, there are successful companies which procure a components locally and produce a suitable model which local consumers prefer and the failed companies which can not meet local consumers' needs. In case of localization of human resources, most companies recognize the importance of this portion and make use of superior human resource aggressively through a related education. In case of localization of marketing, It is found that the successful companies perform pre-market research & management and build a effective marketing skills & after service network and select local business partner which has a technical skills and carry out a business activities, customer support, complaint handling with their own organization. In terms of localization of R&D, the successful major companies establish and operate R&D center to promote a suitable model for local customers. In part of harmony with a local community, it shows that companies which made a successful localization understand the cultural environment and contribute to the community through CSR. In aspect of delegation of authority between headquarters and local subsidiaries, it is found that most of Korean companies are very weak for this part. there is a tendency to be determined by the head office rather than local subsidiaries. Implication of this thesis is that Korean enterprises in India should carry forward localization of products and components, foster of local human resource who recognize management and system of company and take part in voluntary market strategy decision, wholly owned subsidiary, establishment and operation of R & D center, understanding of local culture and system, corporate social responsibility, autonomy in management.

  • PDF

A Study on the Acceptance Factors of the Capital Market Sentiment Index (자본시장 심리지수의 수용요인에 관한 연구)

  • Kim, Suk-Hwan;Kang, Hyoung-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.1-36
    • /
    • 2020
  • This study is to reveal the acceptance factors of the Market Sentiment Index (MSI) created by reflecting the investor sentiment extracted by processing unstructured big data. The research model was established by exploring exogenous variables based on the rational behavior theory and applying the Technology Acceptance Model (TAM). The acceptance of MSI provided to investors in the stock market was found to be influenced by the exogenous variables presented in this study. The results of causal analysis are as follows. First, self-efficacy, investment opportunities, Innovativeness, and perceived cost significantly affect perceived ease of use. Second, Diversity of services and perceived benefits have a statistically significant impact on perceived usefulness. Third, Perceived ease of use and perceived usefulness have a statistically significant effect on attitude to use. Fourth, Attitude to use statistically significantly influences the intention to use, and the investment opportunities as an independent variable affects the intention to use. Fifth, the intention to use statistically significantly affects the final dependent variable, the intention to use continuously. The mediating effect between the independent and dependent variables of the research model is as follows. First, The indirect effect on the causal route from diversity of services to continuous use intention was 0.1491, which was statistically significant at the significance level of 1%. Second, The indirect effect on the causal route from perceived benefit to continuous use intention was 0.1281, which was statistically significant at the significance level of 1%. The results of the multi-group analysis are as follows. First, for groups with and without stock investment experience, multi-group analysis was not possible because the measurement uniformity between the two groups was not secured. Second, the analysis result of the difference in the effect of independent variables of male and female groups on the intention to use continuously, where measurement uniformity was secured between the two groups, In the causal route from usage attitude to usage intention, women are higher than men. And in the causal route from use intention to continuous use intention, males were very high and showed statistically significant difference at significance level 5%.

Necessity of Standardization and Standardized Method for Substances Accounting of Environmental Liability Insurance (환경책임보험 배출 물질 정산의 표준화 필요성 및 산출방법 표준화)

  • Park, Myeongnam;Kim, Chang-wan;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.1-17
    • /
    • 2018
  • Related incidents and accidents are frequent after 2000 years, such as the outbreak of the Taian peninsula crude oil spillage and Gumi hydrofluoric acid leakage accident. In the wake of such environmental pollution accidents, Consensus has been formed to enact legislation on liability for the compensation of environmental pollution in 2014 and the rescue, and has been in force since January 2016. Therefore, in the domestic insurance industry, the introduced environmental liability insurance system needs to be managed through the standardization formula of a new insurance model for managing the environmental risk. This study has been carried out by the emergence of a safe insurance model with a risky nature of the risk type, which is one of the services of the knowledge base. The verification of the six assurance media on the occurrence of environmental pollution such as chemical, waste, marine, soil, etc. is expressed through semantic interoperability through this possible ontology. The insurance model was designed and presented by deducing the relationship between the amount of money and the amount of money that was written in the area of existing expertise, In order to exclude the possible consequences, the concept of abstract is conceptualized in the form of a customer, and a plan for the future development of an ontology-based decision support system is proposed to reduce the cost and resources consumed every year. It is expected that standardization of the verification standard of the mass of mass will minimize errors and reduce the time and resources required for verification.

A Study on the Efficient Flow of Health Examinees (건강검진 수검자의 동선 효율화에 관한 연구)

  • Park, Il-Su;Kim, Jin-Soo;Kim, Sung-Soo;Kim, Eun-Ju;Choi, Hyun-Sook;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.379-389
    • /
    • 2014
  • The purpose of this study is to optimize the patient(examinee) flow in a health examination center via a simulation model and to improve operational efficiency. Two experimentation scenarios were implemented into the simulation model to determine which proposed scenario provides better improvement in terms of the following performance measures: LOS(Length of Stay), staff utilization, and occupancy level. The simulation results demonstrated that there was no significant difference in response results of two scenarios. Although the original motivation of this study was suggest optimal policy for a patient(examinee) flow, the insight into applying simulation in efficiently managing hospital operations is of more value. Simulation approach is a powerful technique that supports efficient decision-making compared to traditional healthcare management approach based on past experience, feelings, and intuition. Therefore, the proposed experimentation model has wide applicability in healthcare systems.

Research-platform Design for the Korean Smart Greenhouse Based on Cloud Computing (클라우드 기반 한국형 스마트 온실 연구 플랫폼 설계 방안)

  • Baek, Jeong-Hyun;Heo, Jeong-Wook;Kim, Hyun-Hwan;Hong, Youngsin;Lee, Jae-Su
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • This study was performed to review the domestic and international smart farm service model based on the convergence of agriculture and information & communication technology and derived various factors needed to improve the Korean smart greenhouse. Studies on modelling of crop growth environment in domestic smart farms were limited. And it took a lot of time to build research infrastructure. The cloud-based research platform as an alternative is needed. This platform can provide an infrastructure for comprehensive data storage and analysis as it manages the growth model of cloud-based integrated data, growth environment model, actuators control model, and farm management as well as knowledge-based expert systems and farm dashboard. Therefore, the cloud-based research platform can be applied as to quantify the relationships among various factors, such as the growth environment of crops, productivity, and actuators control. In addition, it will enable researchers to analyze quantitatively the growth environment model of crops, plants, and growth by utilizing big data, machine learning, and artificial intelligences.