The Journal of The Korea Institute of Intelligent Transport Systems
/
v.13
no.2
/
pp.1-11
/
2014
In this paper, travel speed patterns were deducted based on historical DSRC travel speed data using Decision Tree technique to improve availability of the massive amount of historical data. These patterns were designed to reflect spatio-temporal vicissitudes in reality by generating pattern units classified by months, time of day, and highway sections. The study area was from Seoul TG to Ansung IC sections on Gyung-bu highway where high peak time of day frequently occurs in South Korea. Decision Tree technique was applied to categorize travel speed according to day of week. As a result, five different pattern groups were generated: (Mon)(Tue Wed Thu)(Fri)(Sat)(Sun). Statistical verification was conducted to prove the validity of patterns on nine different highway sections, and the accuracy of fitting was found to be 93%. To reduce travel pattern errors against individual travel speed data, inclusion of four additional variables were also tested. Among those variables, 'traffic condition on previous month' variable improved the pattern grouping accuracy by reducing 50% of speed variance in the decision tree model developed.
This study focuses on the application of the data mining technique logistic regression analysis and decision tree analysis to the domestic public database called Korean Children Youth Panel Survey (KCYPS) to derive a series of important factors affecting the enhancement of life satisfaction of domestic youth. As a result, the general impact factors on life satisfaction for each grade were derived from logistic regression. Using decision tree analysis, we came to conclusions that those factors such as depression, overall grade satisfaction, household economic level, and school adaptation play crucial roles in affecting high school adolesscents' life satisfaction.
Journal of the Korean Data and Information Science Society
/
v.23
no.2
/
pp.299-307
/
2012
Data mining is a method of searching for an interesting relationship among items in a given database. The decision tree is a typical algorithm of data mining. The decision tree is the method that classifies or predicts a group as some subgroups. In general, when researchers create a decision tree model, the generated model can be complicated by the standard of model creation and the number of input variables. In particular, if the decision trees have a large number of input variables in a model, the generated models can be complex and difficult to analyze model. When creating the decision tree model, if there are marginally conditional variables (intervening variables, external variables) in the input variables, it is not directly relevant. In this study, we suggest the method of creating a decision tree using marginally conditional variables and apply to actual data to search for efficiency.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.6
/
pp.682-687
/
2005
Behavioral sequences of the medaka(Oryzias latipes) were investigated through an image system in response to medaka treated with the insecticide and medaka not treated with the insecticide, diazinon(0.1 mg/1). After much observation, behavioral patterns could be divided into 4 patterns: active smooth, active shaking, inactive smooth, and inactive shaking. These patterns were analyzed by 5 features: speed ratio, x and y axes projection, FFT to angle transition, fractal dimension, and center of mass. Each pattern was classified using decision tree. It provide a natural way to incorporate prior knowledge from human experts in fish behavior, The main focus of this study was to determine whether the decision tree could be useful in interpreting and classifying behavior patterns of the animal.
One of decision tree method is regression trees which are used to predict a continuous response. The general splitting criteria in tree growing are based on a compromise in the impurity between the left and the right child node. By picking or the more interesting subsets and ignoring the other, the proposed new splitting criteria in this paper do not split based on a compromise of child nodes anymore. The tree structure by the new criteria might be unbalanced but plausible. It can find a interesting subset as early as possible and express it by a simple clause. As a result, it is very interpretable by sacrificing a little bit of accuracy.
Park, Sang-Il;An, Hyun-Jung;Kim, Hyo-Jin;Lee, Sang-Ho
Proceedings of the Computational Structural Engineering Institute Conference
/
2010.04a
/
pp.226-229
/
2010
본 연구에서는 데이터 저장의 질적 향상을 도모하는 XML 스키마 매칭의 효율적 활용방안을 제시하였다. 이를 위하여 매칭의 가중치의 변화에 따라 달라지는 정확도 데이터를 수집하고, 수집한 데이터를 활용하여 데이터 마이닝 기법 중 하나인 의사결정나무 모델을 수립하였다. 수립모델을 응용하여 구현한 가중치 자동선정 모듈은 설명변수인 교량의 형식, 문서가 포함하고 있는 요소의 수, 문서를 작성한 회사 등의 값에 따라 의사결정나무 모델의 목표변수인 정확도뿐만 아니라, 가장 높은 정확도를 보일 수 있는 가중치까지 간접적으로 제안가능하다. 본 연구로 구현한 모듈을 통해 제안된 XML 스키마 매칭 가중치를 활용하면 그렇지 않은 경우에 비하여 약 10% 정확도 상승효과가 있음을 알 수 있었다.
National long-term care insurance started in July, 2008. We try to make up for weak points and develop a long-term care insurance system. Especially, it is important to upgrade the rating model of the category of need for long-term care continually. We improve the rating model using the data after enforcement of the system to reflect the rapidly changing long-term care marketplace. A decision tree model was adpoted to upgrade the rating model that makes it easy to compare with the current system. This model is based on the first assumption that, a person with worse functional conditions needs more long-term care services than others. Second, the volume of long-term care services are de ned as a service time. This study was conducted to reflect the changing circumstances. Rating models have to be continually improved to reflect changing circumstances, like the infrastructure of the system or the characteristics of the insurance beneficiary.
Proceedings of the Korea Information Processing Society Conference
/
2003.11c
/
pp.1351-1354
/
2003
데이터 마이닝 기법 중 회귀분석 기법과 의사절정나무 분석 기법을 이용하여 국지기상예보칙을 작성하는 방안을 연구하였다. 회귀분석기법을 이용하여 예보값에 영향을 미치는 예보요소를 도출하고, 도출된 예보요소를 회귀분석 기법과 의사결정나무 분석 기법에 적용하여 예보칙을 작성하였다.
In diffusing an information systems(IS), the provider of the IS can be more effective if they can identify user groups who can adopt the system early. By focusing on the user groups, system providers can encourage them to adopt the IS. After the early adopters adopt an IS, the diffusion of the system to other groups can be easier by early adopters' voluntary advertisement and help in adopting the IS. Instead of discrete choice methods which are usually used for this purpose, we suggest a decision tree method. Compared to discrete choice methods, this method is more accurate for prediction and can easily identify non-linear segments of groups. By testing the data of adopters of an IS in agricultural business, we show the excellence of this method in identifying target groups to focus on. This method would help system providers to diffuse their systems by starting from early adopters.
Decision tree is one of the most useful analysis methods for various data mining functions, including prediction, classification, etc, from massive data. Decision tree grows by splitting nodes, during which the purity increases. It is needed to stop splitting nodes when the purity does not increase effectively or new leaves does not contain meaningful number of records. Pruning is done if a branch does not show certain level of performance. By pruning, the structure of decision tree is changed and it is implied that the previous splitting of the parent node was not effective. It is also implied that the splitting of the ancestor nodes were not effective and the choices of attributes and criteria in splitting them were not successful. It should be noticed that new attributes or criteria might be selected to split such nodes for better tries. In this paper, we suggest a procedure to modify decision tree by Fuzzy theory and splitting as an integrated approach.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.