• Title/Summary/Keyword: 의료영상 분할

Search Result 182, Processing Time 0.03 seconds

Development of Image Segmentation Model for Sarcopenia Diagnosis and Its External Validation (근감소증 진단을 위한 영상분할 모델 개발 및 외부검증)

  • Lee, Chung-sub;Lim, Dong-Wook;Kim, Ji-Eon;Noh, Si-Hyeong;Yu, Yeong-Ju;Kim, Tae-Hoon;Jeong, Chang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.535-538
    • /
    • 2022
  • 근감소증은 영양부족, 운동량 감소 그리고 노화 등으로 정상적인 근육의 양과 근력 및 근 기능이 감소하는 질환을 말한다. 근감소증은 보편적으로 유럽 근감소증 실무그룹분석(EWGSOP)에서 정의한 측정 방법을 따른다. 본 논문에서는 근감소증 진단을 위한 영상 분할 모델을 개발하고 외부검증하는 방법에 대해서 제안한다. 우리는 CT 영상에서 L3 영역을 선별하여 자동으로 근육, 피하지방, 내장지방을 분할할 수 있는 인공지능 모델을 U-Net을 사용하여 개발하였다. 또한 모델의 성능을 평가하기 위해서 분할영역의 IOU(Intersection over Union)를 계산하여 내부검증을 진행하였으며, 타 병원의 데이터를 이용하여 같은 방법으로 외부검증을 진행한 결과를 보인다. 검증 결과를 토대로 문제점과 해결방안에 대해서 고찰하고 보완하고자 했다.

Bone Segmentation Method of Visible Human using Multimodal Registration (다중 모달 정합에 의한 Visible Human의 뼈 분할 방법)

  • Lee, Ho;Kim, Dong-Sung;Kang, Heung-Sik
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.719-726
    • /
    • 2003
  • This paper proposes a multimodal registration method for segmentation of the Visible Human color images, in which color characteristics of bones are very similar to those of its surrounding fat areas. Bones are initially segmented in CT images, and then registered into color images to lineate their boundaries in the color images. For the segmentation of bones in CT images, a thresholding method is developed. The registration method registers boundaries of bodies in CT and color images using a cross-correlation approach, in which the boundaries of bodies are extracted by thresholding segmentation methods. The proposed method has been applied to segmentation of bones in a head and legs whose boundary is ambiguous due to surrounding fat areas with similar color characteristics, and produced promising results.

Speed Optimization Design of 3D Medical Image Reconstruction System Based on PC (PC 기반의 3차원 의료영상 재구성 시스템의 고속화 설계)

  • Bae, Su-Hyeon;Kim, Seon-Ho;Yu, Seon-Guk
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.189-198
    • /
    • 1998
  • 3D medical image reconstruction techniques are useful to figure out complex 3D structures from the set of 2D sections. In the paper, 3D medical image reconstruction system is constructed under PC environment and programmed based on modular programming by using Visual C++ 4.2. The whole procedures are composed of data preparation, gradient estimation, classification, shading, transformation and ray-casting & compositing. Three speed optimization techniques are used for accelerating 3D medical image reconstruction technique. One is to reduce the rays when cast rays to reconstruct 3D medical image, another is to reduce the voxels to be calculated and the other is to apply early ray termination. To implement 3D medical image reconstruction system based on PC, speed optimization techniques are experimented and applied.

  • PDF

의료 영상을 활용한 Head/Neck 부위의 3차원 영상 재구성 연구

  • 호동수;이형구;김성현;김도일;서태석;최보영;이진희
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.77-77
    • /
    • 2003
  • 목적: 한국인의 인체 모델링을 연구하는 과정에서 인체의 부위별로 원하고자하는 부분과 영상 분할 할 수 있는 최적의 영상 분할 알고리듬을 개발하여 3차원 해부학적 영상을 재구현 하는데 그 목적이 있다.

  • PDF

Feature Extraction by Line-clustering Segmentation Method (선군집분할방법에 의한 특징 추출)

  • Hwang Jae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.401-408
    • /
    • 2006
  • In this paper, we propose a new class of segmentation technique for feature extraction based on the statistical and regional classification at each vertical or horizontal line of digital image data. Data is processed and clustered at each line, different from the point or space process. They are designed to segment gray-scale sectional images using a horizontal and vertical line process due to their statistical and property differences, and to extract the feature. The techniques presented here show efficient results in case of the gray level overlap and not having threshold image. Such images are also not easy to be segmented by the global or local threshold methods. Line pixels inform us the sectionable data, and can be set according to cluster quality due to the differences of histogram and statistical data. The total segmentation on line clusters can be obtained by adaptive extension onto the horizontal axis. Each processed region has its own pixel value, resulting in feature extraction. The advantage and effectiveness of the line-cluster approach are both shown theoretically and demonstrated through the region-segmental carotid artery medical image processing.

Pulmonary vascular Segmentation and Refinement On the CT Scans (컴퓨터 단층 촬영 영상에서의 폐혈관 분할 및 정제)

  • Shin, Min-Jun;Kim, Do-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.591-597
    • /
    • 2012
  • Medical device performance has been advanced while images are expected to be acquired with further higher quality and pertinent applicability as images have been increasing in importance in analyzing major organs. Recent high frequency of image processing by MATLAB in image analysis area accounts for the intent of this study to segment pulmonary vessels by means of MATLAB. This study is to consist of 3 phases including pulmonary region segmentation, pulmonary vessel segmentation and three dimensional connectivity assessment, in which vessel was segmented, using threshold level, from the pulmonary region segmented, vessel thickness was measured as two dimensional refining process and three dimensional connectivity was assessed as three dimensional refining process. It is expected that MATLAB-based image processing should contribute to diversity and reliability of medical image processing and that the study results may lay a foundation for chest CT images-related researches.

Segmentation of Ganglion Cyst Ultrasound Images using Kernel based FCM (커널 FCM을 이용한 결절종 초음파 영상 분할)

  • Park, Tae-eun;Song, Doo-heon;Kim, Kwang-baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.144-146
    • /
    • 2022
  • 본 논문에서는 Kernel based Fuzzy C-Means(K-FCM) 기반 양자화 기법을 적용하여 의료 초음파 영상에서 특징을 분할하는 기법을 제안한다. 결절종의 경우에는 초음파 영상 내에서 무에코, 저에코의 특징을 가진 낭포성 종양 객체를 특징 영역으로 영상을 분할한다. K-FCM 클러스터링은 기존의 FCM 클러스터링에서 Kernel Function을 적용한 형태의 클러스터링 기법이다. 본 논문에서는 Gaussian Kernel 기반 K-FCM을 적용하여 의료 초음파 영상에서 특징들을 분할하였다. 결절종 초음파 영상에서는 FCM 클러스터링이 F1 Score가 85.574%로 나타났고, K-FCM이 86.442%로 나타났다.

  • PDF

Segmentation of Lung and Lung Lobes in EBT Medical Images (EBT 의료 영상에서 폐 영역 추출 및 폐엽 분할)

  • 김영희;이성기
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.276-292
    • /
    • 2004
  • In this paper. we present methods that extract lung regions from chest EBT(electron beam tomography) images then segment the extracted lung region into lung lobes. We use histogram based thresholding and mathematical morphology for extracting lung regions. For detecting pulmonary fissures, we use edge detector and knowledge-based search method. We suggest this edge detector, which uses adaptive filter scale, to work very well for real edge and insensitive for edge by noise. Our experiments showed about 95% accuracy or higher in extracting lung regions and about 5 pixel distance error in detecting pulmonary fissures.

Brain Trouble Detection of MRI Image using Markov Random Field (마르코프 랜덤 필드를 이용한 자기 공명 영상의 뇌질환 검출)

  • 조상현;염동훈;김태형;김두영
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.1-5
    • /
    • 2003
  • 의료영상의 분할은 의료영상을 컴퓨터 진단 및 가시화에 필요한 같은 성질을 가진 여러 조직으로 나누어주는 방법이다. 즉 입력되어진 영상을 처리하여 유사한 화소들의 집합인 영역들로 화소들을 구분하는 작업이며 영상분할의 결과는 영상인식의 정확성에 큰 영향을 미친다. MRI(Magnetic Resonance Imaging)으로부터 정상적인 세포조직 또는 뇌종양과 같은 비정상적인 세포조직의 가시화와 분석을 위해서는 대상 세포조직의 적절한 분류를 필요로 한다. 하지만 기존의 영역 검출 방법으로는 잡음이 섞여 있는 영상에서 여러 가지의 처리과정(주로 잡음 제거)이 필수적이고 그런 과정으로 인해 정확한 영역 검출이 힘들게 된다. 이에 잡음이 있더라도 이를 제거하기 위한 처리가 필요 없이 영역기반으로 필요한 파라미터의 추정을 통한 MRF(Markov Random Field)를 이용하여 보다 효율적이고 정확하게 MRI에서 질환 영역을 검출할 수 있다.

  • PDF

Design of robust Medical Image Security Algorithm using Watershed Division Method (워터쉐드 분할 기법을 이용한 견고한 의료 영상보안 알고리즘 설계)

  • Oh, Guan-Tack;Jung, Min-Six;Lee, Yun-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1980-1986
    • /
    • 2008
  • A digital watermarking technique used as a protection and certifying mechanism of copyrighted creations including music, still images, and videos in terms of lading any loss in data, reproduction and pursuit. This study suggests using a selected geometric invariant point through the whole processing procedure based on the invariant point so that it will be robust in a geometric transformation attack. The introduced algorithm here is based on a watershed splitting method in order to make medical images strong against RST transformation and other processing. This algorithm also proved that is has robustness against not only RST attack, but also JPEG compression attack and filtering attack.