Seo, Yeong-Geon;Kim, Eung-Hwan;Jeong, Mun-Ryeol;Park, Yeong-Taek;O, Hae-Seok
The Transactions of the Korea Information Processing Society
/
v.3
no.5
/
pp.1046-1058
/
1996
In this paper, we describe an abvanced medical diagnostic system using multimedia technologies in netwok environments. In the system, docotors in remote sites perorm medicl diagnosis by exchanging information about patients and 3-D medicl images of malfunctioning body parts, which are reconstructed from 2-D images such as MRI, CT, CR, Angio. The diagnosic conferencing system controls the conferencing process by exchanging audio, information about patients, 3-D medical images and control data. 3-D medicl images are reconstructed by a ray casting method that uses an nalytical integration. Medical databae conists of absic information about patients, Information about medicl images, users, results of dianosis.
Proceedings of the Korea Information Processing Society Conference
/
2003.05a
/
pp.595-598
/
2003
본 논문에서는 방사선투영영상을 기존 압축방법인 JPEG 압축과 새로운 표준으로 채택중인 JPEG2000을 적용하여 압축율 및 영상의 품질을 비교 실험하였다. 기존의 의료영상압축 표준의 하나인 JPEG 압축은 압축비율이 높아짐에 따라 블륵킹 현상의 발생으로 원 영상이 회손되는 압축의 한계를 인식하고 있다. 따라서 원 영상의 보호와 압축율 증가의 두 가지 면을 만족시키기 위해 Wavelet 을 사용하는 JPEG2000을 실험 평가하여 의료영상압축에 적용하고자 한다. 실험대상으로 환자 10명 정상인 10명의 투영영상을 사용하였으며, 영상의 품질, 손상도 등을 평가하기 위해 PSNR( Peak Signal to Noise Ratio )과 판독의에 의한 ROC( Receiver Operating Characteristic )분석을 실행하였다. 실험결과, 영상의 품질, 손상도를 평가하기 위한 PSNR 은 15:1 압축에서 $46.05{\pm}1.1dB$의 값을 얻었으며, JPEG의 같은 압축비율에 비해 $1.78{\pm}0.1dB$의 값이 높음을 알 수 있었다. 종합적으로 3명의 판독의에 의해 ROC 분석을 실행한 결과 15:1의 압축비율에서 압축비율과 품질을 종합하였을 때 진단에 적합한 최적 압축비율임을 보였다.
Journal of the Institute of Convergence Signal Processing
/
v.20
no.3
/
pp.132-137
/
2019
The amount of data generated from medical images is increasingly exceeding the limits of professional visual analysis, and the need for automated medical image analysis is increasing. For this reason, this study evaluated the classification and accuracy according to the presence or absence of tumor using Inception V3 deep learning model, using MRI medical images showing normal and tumor findings. As a result, the accuracy of the deep learning model was 90% for the training data set and 86% for the validation data set. The loss rate was 0.56 for the training data set and 1.28 for the validation data set. In future studies, it is necessary to secure the data of publicly available medical images to improve the performance of the deep learning model and to ensure the reliability of the evaluation, and to implement modeling by improving the accuracy of labeling through labeling classification.
본 논문에서는 의료 IMACS와 관련된 새로운 디지탈 입력 장치들, 데이타베이스 시스템과 저장매체, 여러 종류의 Workstation, 통신 시스템등 기술적인 면을 많이 다루려 한다. 그리고 영상의 질과 자료의 양, 망의, 성능 분석, 영상화 시스템들과 방사선 정보 시스템과 다른 주변 기기들과의 접속에 따른 IMACS의 효과를 논하려 한다. 또한 지난 87년부터 Gorgetown University Hospital(GUH)은 미육군 의무단의 6,5백만불의 지원으로 가장 광범위한 의료 IMACS설비를 AT & T사와 공동 연구하고 설치하여, IMACS의 기술적 평가를 계속하여 왔다. 이와같이 실행되어 있는 경험을 통하여, 의료 IMACS의 임상 운영 효과와 더 나아가서 새로운 효과들을 검토함으로써 앞으로 보강되어져야 할 점들을 연구하려 한다.
The image data amount that used in medical institution with great development of medical technology is increasing rapidly. Therefore, people need automation method that use image processing description than macrography of doctors for analysis many medical image. In this paper. we propose that acquire texture information to using GLCM about liver area of abdomen CT image, and automatically detects liver tumor using PCA from this data. Method by one feature as intensity of existent liver humor detection was most but we changed into 4 principal component accumulation images using GLCM's texture information 8 feature. Experiment result, 4 principal component accumulation image's variance percentage is 89.9%. It was seen this compare with liver tumor detecting that use only intensity about 92%. This means that can detect liver tumor even if reduce from dimension of image data to 4 dimensions that is the half in 8 dimensions.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.546-548
/
2023
인공지능 기술을 도입한 의료분야에서 진단 및 예측을 위한 관련 연구가 활발하게 진행되고 있다. 특히, 인공지능 기술 적용에 가장 많이 활용되고 있는 의료영상을 기반으로 하는 질환에 관한 진단 연구는 매우 복잡한 과정이 필요한 질환의 진단에 큰 영향을 미치고 있다. 복부 장기들의 분할은 환자의 질환 진단 지원 및 복강경등의 수술 지원에 매우 중요한 부분을 차지한다. 본 논문에서는 의료영상을 통해 13가지 복부 장기들을 분할하는 모델을 만들고 그 결과를 보인다. 본 논문에서 제안한 모델을 통해 13가지 복부 장기에 대한 분할로 영상분석을 통해 진단 지원이 가능할 것으로 기대한다.
Kim, Man-Bae;Jang, Seong-Eun;Lee, Woo-Keun;Choi, Chang-Yeol
Journal of Broadcast Engineering
/
v.15
no.6
/
pp.723-730
/
2010
Recently, diverse 3D image processing technologies have been applied in industries. Among them, stereoscopic conversion is a technology to generate a stereoscopic image from a conventional 2D image. The technology can be applied to movie and broadcasting contents and the viewer can watch 3D stereoscopic contents. Further the stereoscopic conversion is required to be applied to other fields. Following such trend, the aim of this paper is to apply the stereoscopic conversion to medical fields. The medical images can deliver more detailed 3D information with a stereoscopic image compared with a 2D plane image. This paper presents a novel methodology for converting a 2D medical image into a 3D stereoscopic image. For this, mean shift segmentation, edge detection, intensity analysis, etc are utilized to generate a final depth map. From an image and the depth map, left and right images are constructed. In the experiment, the proposed method is performed on a medical image such as CT (Computed Tomograpy). The stereoscopic image displayed on a 3D monitor shows a satisfactory performance.
Ryu, Young Jae;Hur, Young Hoe;Kwon, Seong Young;Chae, Il-Seok;Kim, Min Jung;Kim, Tae-Hoon
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.443-445
/
2021
갑상선 결절(thyroid nodule)은 검진 인구에서 빈번하게 진단되는 질환이지만 현재까지 진단방법은 경험적이며 정성적 판단에 의존하고 있는 실정이다. 본 연구는 갑상선 결절을 평가하기 위하여 시행한 초음파 의료영상을 이용하여 정량 분석할 수 있는 소프트웨어를 개발하였으며 갑상선 양성 결절환자에서의 임상활용 가능성을 평가하고자 한다. 임상 연구는 총 13명의 갑상선 양성 결절 환자를 대상으로 하였다. 환자별 갑상선 초음파영상을 이용하여 정상부위와 병변부위에서 정량 지표인 변동계수를 각각 측정하였다. 환자별 정상부위와 병변부위의 변동계수 차이는 대응표본 T 검정을 사용하여 비교하였으며 유의한 차이를 확인할 수 있었다. 본 연구를 통하여 개발한 정량분석 소프트웨어를 실제 갑상선 양성 결절 환자에서 갑상선 결절을 분석·평가하는데 활용할 수 있을 것으로 판단된다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2003.06a
/
pp.1-5
/
2003
의료영상의 분할은 의료영상을 컴퓨터 진단 및 가시화에 필요한 같은 성질을 가진 여러 조직으로 나누어주는 방법이다. 즉 입력되어진 영상을 처리하여 유사한 화소들의 집합인 영역들로 화소들을 구분하는 작업이며 영상분할의 결과는 영상인식의 정확성에 큰 영향을 미친다. MRI(Magnetic Resonance Imaging)으로부터 정상적인 세포조직 또는 뇌종양과 같은 비정상적인 세포조직의 가시화와 분석을 위해서는 대상 세포조직의 적절한 분류를 필요로 한다. 하지만 기존의 영역 검출 방법으로는 잡음이 섞여 있는 영상에서 여러 가지의 처리과정(주로 잡음 제거)이 필수적이고 그런 과정으로 인해 정확한 영역 검출이 힘들게 된다. 이에 잡음이 있더라도 이를 제거하기 위한 처리가 필요 없이 영역기반으로 필요한 파라미터의 추정을 통한 MRF(Markov Random Field)를 이용하여 보다 효율적이고 정확하게 MRI에서 질환 영역을 검출할 수 있다.
Kim, Tae-Hoon;Jeong, Chang-Won;Kim, Youe Ree;Chae, IlSeok;Kim, Ki-Jong
Proceedings of the Korea Information Processing Society Conference
/
2020.11a
/
pp.1064-1065
/
2020
본 연구는 한국인 뇌MRI영상을 이용하여 대뇌 영역별 분석 프로토콜과 정량 평가방법을 개발하여 정상인을 대상으로 뇌용적량을 정량 분석하고자 한다. 뇌MRI영상 분석 프로토콜을 최적화하기 위해 먼저 뇌용적 변화에 있어 평가방법을 선정하고, VBM 후처리과정은 MRI영상 신호불균질성 교정, 조직세분화 방법, 대뇌 표준영상 제작, 신호 편평화(smoothing) 과정을 단계별로 최적화하였다. 이 정량분석 프로토콜은 정상인과 뇌질환 환자의 뇌용적 비교뿐만 아니라 환자 약물 치료 전·후에 나타나는 용적 변화를 정량적으로 평가하는 연구에 활용할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.