• Title/Summary/Keyword: 의료영상가시화

Search Result 75, Processing Time 0.022 seconds

Scale Space Filtering based Parameters Estimation for Image Region Segmentation (영상 영역 분할을 위한 스케일 스페이스 필터링 기반 파라미터 추정)

  • Im, Jee-Young;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.2
    • /
    • pp.21-28
    • /
    • 1996
  • The nature of complexity of medical images makes them difficult to segment using standard techniques. Therefore the usual approaches to segment images continue to predominantly involve manual interaction. But it tediously consumes a good deal of time and efforts of the experts. Hereby a nonmanual parameters estimation which can replace the manual interaction is needed to solve the problem of redundant manual works for an image segmentation. This paper attempts to estimate parameters for an image region segmentation using Scale Space Filtering. This attempt results in estimating the number of regions, their boundary and each representatives to be segmented 2-dimensionally and 3-dimensionally. Using this algorithm, we may diminish the problem of wasted time and efforts for finding prerequisite segmentation parameters, and lead the relatively reasonable result of region segmentation.

  • PDF

A Design and Implementation of Volume Rendering Program based on 3D Sampling (3차원 샘플링에 기만을 둔 볼륨랜더링 프로그램의 설계 및 구현)

  • 박재영;이병일;최흥국
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.494-504
    • /
    • 2002
  • Volume rendering is a method of displaying volumetric data as a sequence two-dimensional image. Because this algorithm has an advantage of visualizing structures within objects, it has recently been used to analyze medical images i.e, MRI, PET, and SPECT. In this paper. we suggested a method for creating images easily from sampled volumetric data and applied the interpolation method to medical images. Additionally, we implemented and applied two kinds of interpolation methods to improve the image quality, linear interpolation and cubic interpolation at the sampling stage. Subsequently, we compared the results of volume rendered data using a transfer function. We anticipate a significant contribution to diagnosis through image reconstruction using a volumetric data set, because volume rendering techniques of medical images are the result of 3-dimensional data.

  • PDF

Nonuniformity Correction Scheme Based on 3-dimensional Visualization of MRI Images (MRI 영상의 3차원 가시화를 통한 영상 불균일성 보정 기법)

  • Kim, Hyoung-Jin;Seo, Kwang-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.948-958
    • /
    • 2010
  • Human body signals collected by the MRI system are very weak, such that they may be easily affected by either external noise or system instability while being imaged. Therefore, this paper analyzes the nonuniformity caused by a design of the RF receiving coil in a low-magnetic-field MRI system, and proposes an efficient method to improve the image uniformity. In this paper, a method for acquiring 3D bias volume data by using phantom data among various methods for correcting such nonuniformity in MRI image is proposed, such that it is possible to correct various-sized images. It is shown by simulations that images obtained by various imaging methods can be effectively corrected using single bias data.

Implementation of Modified Shear-warp Volume Rendering in TMS320C6201 (TMS320C6201에 적합하게 보정된 쉬어-윕 볼륨렌더링 구현)

  • 최석원;권민정;박현욱
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.519-526
    • /
    • 2000
  • 볼륨 렌더링은 3D 의료영상 데이터를 가시화하는 중용한 기법 중 하나이다. 그러나 볼륨 렌더링을 실시간으로 이룰 때, 많은 계산량을 필요로하는 것이 볼률 렌더링을 사용하는데 걸림돌이 되고 있다. 이 논문에서는 Superscalar와 VLIM(Very Long Instruction Word)의 구조를 가지고 있어 동시에 8개의 명령어 수행이 가능한 TI사의 TMS320C6201 DSP를 이용하여 3D 초음파 영상의 쉬어-웝 볼륨 렌더링을 구현하였다. 쉬어-웝 방법을 DSP 상에서 최적으로 구현하기 위하여 ray map 방법, one-to-four ray casting, ?디 skipping 방법을 제안하였다. 제안한 방법들을 이용한 볼륨 렌더링과 적용하지 않은 기존의 알고리즘을 DSP에 구현하여 PSNR과 렌더링 시간의 비교·평가를 통해 만족할 만한 영상 화질에 빠른 렌더링 성능을 얻을 수 있음을 보여주었다.

  • PDF

Ambient Occlusion Volume Rendering using Multi-Range Statistics (다중 영역 통계량을 이용한 환경-광 가림 볼륨 가시화)

  • Nam, Jinhyun;Kye, Heewon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.3
    • /
    • pp.27-35
    • /
    • 2015
  • This study presents a volume rendering method using ambient occlusion which is one of global illumination methods. By considering the volume density distribution as normal distribution, ambient occlusion can be calculated at real-time speed regardless of modification of opacity transfer function. We calculate and store the averages and standard deviations of densities in a block centered at each voxel in pre-processing time. In rendering process, we determine the illumination value by estimating the nearby opacity. We generalized theoretical model and generated better quality images improving our previous research. In detail, various shapes of transfer function can be used due to the proposed equation model. Moreover, we introduced a multi-range model to give nearer objects more weight. As the result, more realistic volume rendering image can be generated at real-time speed by mixing local and ambient occlusion shading.

LDI Implementation using Shear-Warp Rendering (쉬어-왑 렌더링을 이용한 LDI 구현)

  • 최현상;한정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.481-483
    • /
    • 2000
  • 영상 기반 모델링 및 렌더링을 위해 제안된 LDI(Layered Depth Images) 기법은 여러 장의 2차원 영상과 깊이 정보, 카메라 정보를 입력으로 받아 3차원 와핑을 이용해 새로운 장면을 렌더링한다. 하지만 이 기법은 홀 발생 문제 등 몇가지 결함을 가지고 있다. 본 논문은 이러한 LDI의 문제를 해결하고자, 의료 영상 가시화 분야에서 널리 사용되는 쉬어-왑 렌더링 알고리즘을 사용한 결과를 설명한다. 한편, 본 논문에서 제안된 알고리즘은 적은 데이터를 필요로 하는데, 웹 상에서 오브젝트 플레이어 플러그인으로 개발한 결과 좋은 성능을 보였다.

  • PDF

AR monitoring technology for medical convergence (증강현실 모니터링 기술의 의료융합)

  • Lee, Kyung Sook;Lim, Wonbong;Moon, Young Lae
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.119-124
    • /
    • 2018
  • The augmented reality(AR) technology enables to acquire various image information at the same time by combining virtual image information with the user's viewpoint. These AR technologies have been used to visualize patients' organs and tissues during surgery and diagnosis in the fields of Image-Guide Operation, Surgical Training, and Image Diagnosis by medical convergence, and provides the most effective surgical methods. In this paper, we study the technical features and application methods of each element technology for medical fusion of AR technology. In the AR technology for medical convergence, display, marker recognition and image synthesis interface technology is essential for efficient medical image. Such AR technology is considered to be a way to drastically improve current medical technology in the fields of image guide surgery, surgical education, and imaging diagnosis.

Dynamic Parameter Visualization and Noise Suppression Techniques for Contrast-Enhanced Ultrasonography (조영증강 초음파진단을 위한 동적 파라미터 가시화기법 및 노이즈 개선기법)

  • Kim, Ho-Joon
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.910-918
    • /
    • 2015
  • This paper presents a parameter visualization technique to overcome the limitation of the naked eye in contrast-enhanced ultrasonography. A method is also proposed to compensate for the distortion and noise in ultrasound image sequences. Meaningful parameters for diagnosing liver disease can be extracted from the dynamic patterns of the contrast enhancement in ultrasound images. The visualization technique can provide more accurate information by generating a parametric image from the dynamic data. Respiratory motions and noise from micro-bubble in ultrasound data may cause a degradation of the reliability of the diagnostic parameters. A multi-stage algorithm for respiratory motion tracking and an image enhancement technique based on the Markov Random Field are proposed. The usefulness of the proposed methods is empirically discussed through experiments by using a set of clinical data.

Mobile Volume Rendering System for Client-Server Environment (클라이언트 서버 기반 모바일 볼륨 가시화 시스템)

  • Lee, Woongkyu;Kye, Heewon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.3
    • /
    • pp.17-26
    • /
    • 2015
  • In this paper, we explain a volume rendering system for client-server environment. A single GPU-equipped PC works as a server which is based on the ideas that only a few concurrent users use a volume rendering system in a small hospital. As the clients, we used Android mobile devices such as smart phones. User events are transformed to rendering requests by the client application. When the server receives a rendering request, it renders the volume using the GPU. The rendered image is compressed to JPEG or PNG format so that we can save network bandwidth and reduce transfer time. In addition, we perform an event pruning method while a user is dragging the touch to enhance latency. The server compensates the pruning by interpolating the touch positions. As the result, real-time volume rendering is possible for 5 concurrent users on single GPU-equipped commodity hardware.

Parametric Image Generation and Enhancement in Contrast-Enhanced Ultrasonography (조영증강 초음파 진단에서 파라미터 영상 생성 및 개선 기법)

  • Kim, Shin-Hae;Lee, Eun-Lim;Jo, Eun-Bee;Kim, Ho-Joon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.211-216
    • /
    • 2017
  • This paper proposes image processing techniques that improve usability and performance in a diagnostic system of the contrast-enhanced ultrasonography. For a methodology for visualizing diagnostic parameter data in an ultrasonic medical image, an expression of transition time data with successive pixel values and a method of generating a lesion diagnostic parameter image with four categorized values are presented. We also introduce a MRF-based image enhancement technique to eliminate noises from generated parametric images. Such parametric image generation technique can overcome the difficulty of discriminating dynamic change in patterns in the ultrasonography. The technique clarifies the contour of the region in the original image and facilitates visual determination of the characteristics of the lesion through four colors. With regard to this MRF-based image enhancement, we define the energy function of consecutive pixel values and develop a technique to optimize it, and the usability of the proposed theory is examined through experiments with medical images.