감정 분석은 문서의 주관적인 감정, 의견, 기분을 파악하기 위한 방법으로 소셜 미디어, 온라인 리뷰 등 다양한 분야에서 활용된다. 문서 내 텍스트가 나타내는 단어와 문맥을 기반으로 감정 수치를 계산하여 긍정 또는 부정 감정을 결정한다. 2015년에 구축된 네이버 영화평 데이터 20 만개에 12 만개를 추가 구축하여 감정 분석 연구를 진행하였으며 언어 모델로는 최근 자연어처리 분야에서 높은 성능을 보여주는 BERT 모델을 이용하였다. 감정 분석 기법으로는 LSTM(Long Short-Term Memory) 등 기존의 기계학습 기법과 구글의 다국어 BERT 모델, 그리고 KoBERT 모델을 이용하여 감정 분석의 성능을 비교하였으며, KoBERT 모델이 89.90%로 가장 높은 성능을 보여주었다.
현대사회에서는 다양한 방법, 통로로 자신들의 의견을 표현하고 또한 감정들을 표출한다. 이렇게 표출된 다양한 문장 및 감정들을 통해 각 연령별로 어떤 문제를 가지고 있는지, 무슨 상황에 놓여있는지 등을 알 수 있다. 본 논문에서는 이렇게 모여진 감성대화 말뭉치를 이용해 청소년들이 문장에서 추출한 단어들과 감정, 상황과 어떠한 연관성을 보이는지 확인해보고자 연구를 진행하였다. 청소년들이 남성의 경우 학교폭력 및 따돌림과 관련한 문제, 여성의 경우 가족관계와 관련한 문제와 연관성이 크다는 것을 확인하였다.
본 논문에서는 딥러닝 기법 중 하나인 순환신경망(RNN)을 활용하여 자연어를 처리할 수 있는 모델 개발에 대하여 연구를 진행하였다. 다양한 주제에 대한 사용자들의 의견을 확보할 수 있는 유튜브 플랫픔을 활용하여 데이터를 확보하였으며, 감성 분류를 진행하는 만큼 학습 데이터셋으로는 네이버 영화 리뷰 데이터셋을 활용하였다. 사용자는 직접 데이터 파일을 삽입하거나 혹은 유튜브 댓글과 같이 데이터를 외부에서 확보하여 감성을 분석할 수 있으며, 자연어 속 등장하는 단어의 빈도수를 종합하여 해당 데이터들 속 키워드는 무엇인지를 분석할 수 있도록 하였다. 나아가 종합 데이터 분석 관리 플랫폼을 제작하기 위하여 해당 데이터를 데이터베이스에 저장하고GUI 프로그램을 통하여 접근 및 관리가 가능하도록 하였다.
소설, 블로그, 채팅 메시지, 상품평 등의 텍스트는 전반적인 정서의 흐름을 가지고 있다. 텍스트 간의 정서 흐름의 유사도를 비교하면 유사한 정서 흐름을 갖는 텍스트를 분류할 수 있고, 상품 추천이나 의견 수집 등에 활용할 수 있다. 본 논문에서는 텍스트에서 정서 단어를 순차적으로 추출하고 쾌-불쾌, 활성화의 2차원으로 분석하여 텍스트의 정서 흐름을 파악하였다. 또한 텍스트의 순차적인 흐름을 시간 차원으로 설정하여 텍스트의 전반적인 정서 흐름인 '지배 정서(dominant emotion)'를 파악하기 위하여 쾌-불쾌, 활성화, 시간의 3차원 공간에서 정서 흐름을 탐색하였다. 또한 이 3차원 공간 안에서 유클리드 거리를 사용하여 지배 정서 흐름의 유사도를 계산함으로써 유사한 정서 흐름을 가지는 텍스트를 분류하는 방법을 제안하였다. 제안한 방법을 통해 한국 근대 단편 소설들을 분석하여 지배 정서를 분석하였고 유사한 지배 정서를 가지는 소설들을 분류하였다.
본 연구는 높은 접근성과 간결성으로 인해 방대한 양의 텍스트를 생산하는 트위터 데이터를 분석하여 토픽의 변화 시점 및 패턴을 파악하였다. 먼저 특정 상품명에 관한 키워드를 추출한 후, 동시출현단어분석(Co-word Analysis)을 이용하여 노드와 에지를 통해 토픽과 관련 키워드를 직관적으로 파악 가능한 네트워크로 표현하였다. 이후 네트워크 분석 결과를 검증하기 위해 출현빈도 기반의 시계열 분석과 LDA 토픽 모델링을 실시하였다. 또한 트위터 상의 토픽 변화와 언론 기사 검색결과를 비교한 결과, 트위터는 언론 뉴스에 즉각적으로 반응하며 부정적 이슈를 빠르게 확산시키는 것을 확인하였다. 이를 통해 기업은 대중의 부정적 의견을 신속하게 파악하고 이에 대한 즉각적인 의사결정 및 대응을 위한 도구로 본 연구방법을 활용할 수 있을 것으로 기대된다.
지상파에 한정되어 방영되었던 과거와는 달리 현재는 케이블 채널과 인터넷 웹에서도 수많은 드라마가 방영되고 있다. 드라마를 보고난 후 시청자들은 리뷰를 통해 적극적으로 자신의 의견을 표현하고 이러한 리뷰의 분석에 관련된 연구들이 활발하게 진행되고 있다. 드라마의 특성상 장르가 뚜렷하지 않고 시청자의 다양한 연령층으로 인해 다른 시청자들의 리뷰와 평가는 어떤 드라마를 볼 것인지 결정하는데 도움이 된다. 하지만 많은 리뷰를 시청자가 일일이 확인하고 분석하는 것은 어렵기 때문에 자동으로 분석하기위한 데이터 분석 기법이 필요하다. 이에 본 논문에서는 드라마 선택에 중요한 영향을 미치는 리뷰의 토픽을 분류하고 단어의 의미 유사도에 따라 의미적 토픽으로 재분류한다. 그리고 리뷰를 의미적 토픽에 따른 문장으로 분류한 다음 감성단어를 통해 감성을 분석하는 모델을 제안한다.
본 연구의 목적은 국내 도시 지역을 중심으로 영어간판의 언어적 특성과 영어간판에 관한 대학생들의 인식을 통해 사회 문화적 양상을 살펴보는 것이다. 연구 방법으로 해당지역의 영어간판 촬영과 학생들로부터의 설문이 포함되었다. 분석 결과, 영어간판의 55.4%는 '영어'로만 표기되어 있고, 주로 주류 음료 및 의류업에 몰려 있었다. 텍스트 구조는 영어로만 표기된 것은 '2-3단어'(43%), 영어+국어 혼용의 경우 '4-5' 단어(25%)로 전체의 약 68%였다. 영어간판의 약 70%는 주류 음료(27%), 음식점(23%), 의류업(21%)에서 사용되고 있었으며, 이러한 간판들이 주변 환경과 조화를 이룬다는 의견은 42%에 불과하였다. 좋은 영어간판의 요건으로는 '시각성(27%)', '업종 표현(23%)', '세련 고급스러움(19%)', '디자인과 창의성(15%)'을 들 수 있으며 이를 충족하는 간판은 신촌 지역에 가장 많았다. 한편, 부정적인 영어간판은 의류업에 가장 많았다. 현재의 영어간판은 전반적으로 매우 미흡함을 보이고 있어 아름답고 조화로운 영어간판 문화 조성을 위한 정책적, 제도적 노력이 요구된다.
감성분석은 비정형 텍스트에 나타나는 사람들의 의견이나 성향 등을 분석하는 오피니언 마이닝의 응용 분야이다. 최근에는 소셜미디어에 대한 감성분석이 주목받고 있으나 소셜미디어에는 신조어, 속어 등이 포함되어있어 기존 감성분석으로는 분석이 쉽지 않다. 본 연구에서는, 이러한 문제점을 해결하기 위해, 새로운 감성분석 시스템을 설계한다. 제안 시스템은 신조어, 속어 등이 포함된 소셜미디어에서도 긍/부정 뿐만아니라 다양한 감성분석이 가능하다. 먼저, 현재 소셜미디어에서 많이 나타나는 감성관련 신조어와 속어 등을 수집한다. 그리고 나서, 기존의 감성모델을 확장하고 이를 활용하여 감성단어에 감성정도를 수치화 한다. 또한 감성정도를 반영하여 새로운 감성단어 사전을 구축한다. 최종적으로, 신조어가 포함된 감성사전과 확장된 감성모델을 적용한 감성분석시스템을 설계한다.
Journal of the Korean Data and Information Science Society
/
제27권4호
/
pp.845-854
/
2016
감성분석 (sentiment analysis) 혹은 오피니언 마이닝 (opinion mining)은 블로그, 리뷰, 신문기사나 소셜네트워크 등의 문서에서 개인의 주관적인 정보 혹은 의견을 알아보는데 사용되는 텍스트 마이닝의 기법이다. 평점이 있는 온라인 리뷰에서 리뷰 텍스트에 기반한 평점의 분류문제에 대한 선행연구에서는 이진 분류만을 고려하였다. 그러나 긍정과 부정 외에도 중립적인 의견도 있을 수 있기 때문에 이진 분류보다는 다범주 분류가 더 적합할 것이다. 본 연구에서는 리뷰 텍스트에 기반한 평점의 다범주 분류문제를 고려한다. 전처리에서는 카이제곱 통계량을 이용하여 평점과 연관된 단어들을 추출하고 이를 입력변수로 삼아 지지벡터기계 (support vector machines)와 비례오즈 모형 (proportional odds model) 등 다범주 분류기의 예측력을 비교한다.
IoT(Internet of Things)에 대한 관심과 함께 웨어러블 디바이스 또한 차세대 융합 기술의 핵심으로 그 관심이 증가하고 있다. 특히, 초기 단계인 스마트워치 시장의 선점을 위하여 여러 기업들이 경쟁하고 있으며, 사용자들은 이러한 경쟁 속에서 각 기기에 대한 의견을 SNS를 통하여 공유하며 그에 대한 선호도를 표출하고 있다. 따라서 본 논문에서는 스마트워치에 관련된 속성과 감성단어들에 대한 감성사전을 먼저 구축한 뒤 이를 토대로 의견 데이터 모델을 통하여 수집된 SNS의 데이터를 속성별로 분류한다. 이후 수집된 데이터를 자연언어 처리 기법을 이용하여 전반적 극성 및 속성별 극성을 판단하고 이를 통하여 각 스마트워치 리뷰에 대한 분석을 수행하고자 한다. 그리고 수집된 자료 분석을 통하여 사용자들이 선호하는 스마트워치의 속성을 파악할 수 있도록 하고 이를 통해 각 기기별 발전방향을 판단하는데 기여하도록 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.