• 제목/요약/키워드: 의견단어

검색결과 79건 처리시간 0.025초

BERT 언어 모델을 이용한 감정 분석 시스템 (Sentiment Analysis System by Using BERT Language Model)

  • 김택현;조단비;이현영;원혜진;강승식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.975-977
    • /
    • 2020
  • 감정 분석은 문서의 주관적인 감정, 의견, 기분을 파악하기 위한 방법으로 소셜 미디어, 온라인 리뷰 등 다양한 분야에서 활용된다. 문서 내 텍스트가 나타내는 단어와 문맥을 기반으로 감정 수치를 계산하여 긍정 또는 부정 감정을 결정한다. 2015년에 구축된 네이버 영화평 데이터 20 만개에 12 만개를 추가 구축하여 감정 분석 연구를 진행하였으며 언어 모델로는 최근 자연어처리 분야에서 높은 성능을 보여주는 BERT 모델을 이용하였다. 감정 분석 기법으로는 LSTM(Long Short-Term Memory) 등 기존의 기계학습 기법과 구글의 다국어 BERT 모델, 그리고 KoBERT 모델을 이용하여 감정 분석의 성능을 비교하였으며, KoBERT 모델이 89.90%로 가장 높은 성능을 보여주었다.

감성대화 말뭉치로 보는 청소년의 문제 도출 (Identifying issues facing youth through emotional dialogue corpus)

  • 김상민;이병천;우지영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.331-332
    • /
    • 2022
  • 현대사회에서는 다양한 방법, 통로로 자신들의 의견을 표현하고 또한 감정들을 표출한다. 이렇게 표출된 다양한 문장 및 감정들을 통해 각 연령별로 어떤 문제를 가지고 있는지, 무슨 상황에 놓여있는지 등을 알 수 있다. 본 논문에서는 이렇게 모여진 감성대화 말뭉치를 이용해 청소년들이 문장에서 추출한 단어들과 감정, 상황과 어떠한 연관성을 보이는지 확인해보고자 연구를 진행하였다. 청소년들이 남성의 경우 학교폭력 및 따돌림과 관련한 문제, 여성의 경우 가족관계와 관련한 문제와 연관성이 크다는 것을 확인하였다.

  • PDF

순환신경망(RNN)을 통한 자연어 감성 분석 (Natural language sensitivity analysis using RNN)

  • 허태성;전세현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.473-474
    • /
    • 2023
  • 본 논문에서는 딥러닝 기법 중 하나인 순환신경망(RNN)을 활용하여 자연어를 처리할 수 있는 모델 개발에 대하여 연구를 진행하였다. 다양한 주제에 대한 사용자들의 의견을 확보할 수 있는 유튜브 플랫픔을 활용하여 데이터를 확보하였으며, 감성 분류를 진행하는 만큼 학습 데이터셋으로는 네이버 영화 리뷰 데이터셋을 활용하였다. 사용자는 직접 데이터 파일을 삽입하거나 혹은 유튜브 댓글과 같이 데이터를 외부에서 확보하여 감성을 분석할 수 있으며, 자연어 속 등장하는 단어의 빈도수를 종합하여 해당 데이터들 속 키워드는 무엇인지를 분석할 수 있도록 하였다. 나아가 종합 데이터 분석 관리 플랫폼을 제작하기 위하여 해당 데이터를 데이터베이스에 저장하고GUI 프로그램을 통하여 접근 및 관리가 가능하도록 하였다.

  • PDF

정서 차원 공간에서 소설의 지배 정서 분석 및 분류 (Analyzing and classifying emotional flow of story in emotion dimension space)

  • 이신영;함준석;고일주
    • 인지과학
    • /
    • 제22권3호
    • /
    • pp.299-326
    • /
    • 2011
  • 소설, 블로그, 채팅 메시지, 상품평 등의 텍스트는 전반적인 정서의 흐름을 가지고 있다. 텍스트 간의 정서 흐름의 유사도를 비교하면 유사한 정서 흐름을 갖는 텍스트를 분류할 수 있고, 상품 추천이나 의견 수집 등에 활용할 수 있다. 본 논문에서는 텍스트에서 정서 단어를 순차적으로 추출하고 쾌-불쾌, 활성화의 2차원으로 분석하여 텍스트의 정서 흐름을 파악하였다. 또한 텍스트의 순차적인 흐름을 시간 차원으로 설정하여 텍스트의 전반적인 정서 흐름인 '지배 정서(dominant emotion)'를 파악하기 위하여 쾌-불쾌, 활성화, 시간의 3차원 공간에서 정서 흐름을 탐색하였다. 또한 이 3차원 공간 안에서 유클리드 거리를 사용하여 지배 정서 흐름의 유사도를 계산함으로써 유사한 정서 흐름을 가지는 텍스트를 분류하는 방법을 제안하였다. 제안한 방법을 통해 한국 근대 단편 소설들을 분석하여 지배 정서를 분석하였고 유사한 지배 정서를 가지는 소설들을 분류하였다.

  • PDF

트위터 데이터를 이용한 네트워크 기반 토픽 변화 추적 연구 (Topic-Network based Topic Shift Detection on Twitter)

  • 진설아;허고은;정유경;송민
    • 정보관리학회지
    • /
    • 제30권1호
    • /
    • pp.285-302
    • /
    • 2013
  • 본 연구는 높은 접근성과 간결성으로 인해 방대한 양의 텍스트를 생산하는 트위터 데이터를 분석하여 토픽의 변화 시점 및 패턴을 파악하였다. 먼저 특정 상품명에 관한 키워드를 추출한 후, 동시출현단어분석(Co-word Analysis)을 이용하여 노드와 에지를 통해 토픽과 관련 키워드를 직관적으로 파악 가능한 네트워크로 표현하였다. 이후 네트워크 분석 결과를 검증하기 위해 출현빈도 기반의 시계열 분석과 LDA 토픽 모델링을 실시하였다. 또한 트위터 상의 토픽 변화와 언론 기사 검색결과를 비교한 결과, 트위터는 언론 뉴스에 즉각적으로 반응하며 부정적 이슈를 빠르게 확산시키는 것을 확인하였다. 이를 통해 기업은 대중의 부정적 의견을 신속하게 파악하고 이에 대한 즉각적인 의사결정 및 대응을 위한 도구로 본 연구방법을 활용할 수 있을 것으로 기대된다.

리뷰의 의미적 토픽 분류를 적용한 감성 분석 모델 (Sentiment Analysis Model with Semantic Topic Classification of Reviews)

  • 임명진;김판구;신주현
    • 스마트미디어저널
    • /
    • 제9권2호
    • /
    • pp.69-77
    • /
    • 2020
  • 지상파에 한정되어 방영되었던 과거와는 달리 현재는 케이블 채널과 인터넷 웹에서도 수많은 드라마가 방영되고 있다. 드라마를 보고난 후 시청자들은 리뷰를 통해 적극적으로 자신의 의견을 표현하고 이러한 리뷰의 분석에 관련된 연구들이 활발하게 진행되고 있다. 드라마의 특성상 장르가 뚜렷하지 않고 시청자의 다양한 연령층으로 인해 다른 시청자들의 리뷰와 평가는 어떤 드라마를 볼 것인지 결정하는데 도움이 된다. 하지만 많은 리뷰를 시청자가 일일이 확인하고 분석하는 것은 어렵기 때문에 자동으로 분석하기위한 데이터 분석 기법이 필요하다. 이에 본 논문에서는 드라마 선택에 중요한 영향을 미치는 리뷰의 토픽을 분류하고 단어의 의미 유사도에 따라 의미적 토픽으로 재분류한다. 그리고 리뷰를 의미적 토픽에 따른 문장으로 분류한 다음 감성단어를 통해 감성을 분석하는 모델을 제안한다.

행위공동체 내의 언어·사회·문화: 영어간판 속 텍스트의 언어적 특성과 사회·문화적 양상에 관한 인식의 고찰 (The Language·Society·Culture in a Community of Practice: The Linguistic Features and Students' Perspectives on English Signboards)

  • 이영화
    • 한국콘텐츠학회논문지
    • /
    • 제18권6호
    • /
    • pp.364-373
    • /
    • 2018
  • 본 연구의 목적은 국내 도시 지역을 중심으로 영어간판의 언어적 특성과 영어간판에 관한 대학생들의 인식을 통해 사회 문화적 양상을 살펴보는 것이다. 연구 방법으로 해당지역의 영어간판 촬영과 학생들로부터의 설문이 포함되었다. 분석 결과, 영어간판의 55.4%는 '영어'로만 표기되어 있고, 주로 주류 음료 및 의류업에 몰려 있었다. 텍스트 구조는 영어로만 표기된 것은 '2-3단어'(43%), 영어+국어 혼용의 경우 '4-5' 단어(25%)로 전체의 약 68%였다. 영어간판의 약 70%는 주류 음료(27%), 음식점(23%), 의류업(21%)에서 사용되고 있었으며, 이러한 간판들이 주변 환경과 조화를 이룬다는 의견은 42%에 불과하였다. 좋은 영어간판의 요건으로는 '시각성(27%)', '업종 표현(23%)', '세련 고급스러움(19%)', '디자인과 창의성(15%)'을 들 수 있으며 이를 충족하는 간판은 신촌 지역에 가장 많았다. 한편, 부정적인 영어간판은 의류업에 가장 많았다. 현재의 영어간판은 전반적으로 매우 미흡함을 보이고 있어 아름답고 조화로운 영어간판 문화 조성을 위한 정책적, 제도적 노력이 요구된다.

Emotional analysis system for social media using sentiment dictionary with newly-created words

  • Shin, Pan-Seop
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.133-140
    • /
    • 2020
  • 감성분석은 비정형 텍스트에 나타나는 사람들의 의견이나 성향 등을 분석하는 오피니언 마이닝의 응용 분야이다. 최근에는 소셜미디어에 대한 감성분석이 주목받고 있으나 소셜미디어에는 신조어, 속어 등이 포함되어있어 기존 감성분석으로는 분석이 쉽지 않다. 본 연구에서는, 이러한 문제점을 해결하기 위해, 새로운 감성분석 시스템을 설계한다. 제안 시스템은 신조어, 속어 등이 포함된 소셜미디어에서도 긍/부정 뿐만아니라 다양한 감성분석이 가능하다. 먼저, 현재 소셜미디어에서 많이 나타나는 감성관련 신조어와 속어 등을 수집한다. 그리고 나서, 기존의 감성모델을 확장하고 이를 활용하여 감성단어에 감성정도를 수치화 한다. 또한 감성정도를 반영하여 새로운 감성단어 사전을 구축한다. 최종적으로, 신조어가 포함된 감성사전과 확장된 감성모델을 적용한 감성분석시스템을 설계한다.

온라인 리뷰에서 평점의 분류 (Classification of ratings in online reviews)

  • 최동준;최호식;박창이
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권4호
    • /
    • pp.845-854
    • /
    • 2016
  • 감성분석 (sentiment analysis) 혹은 오피니언 마이닝 (opinion mining)은 블로그, 리뷰, 신문기사나 소셜네트워크 등의 문서에서 개인의 주관적인 정보 혹은 의견을 알아보는데 사용되는 텍스트 마이닝의 기법이다. 평점이 있는 온라인 리뷰에서 리뷰 텍스트에 기반한 평점의 분류문제에 대한 선행연구에서는 이진 분류만을 고려하였다. 그러나 긍정과 부정 외에도 중립적인 의견도 있을 수 있기 때문에 이진 분류보다는 다범주 분류가 더 적합할 것이다. 본 연구에서는 리뷰 텍스트에 기반한 평점의 다범주 분류문제를 고려한다. 전처리에서는 카이제곱 통계량을 이용하여 평점과 연관된 단어들을 추출하고 이를 입력변수로 삼아 지지벡터기계 (support vector machines)와 비례오즈 모형 (proportional odds model) 등 다범주 분류기의 예측력을 비교한다.

스마트워치 SNS 리뷰 데이터와 오피니언 마이닝을 통한 감성 분석 처리에 대한 연구 (A Study on Smartwatch review data of SNS and sentiment analytical using opinion mining)

  • 신동현;최용락
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.1047-1050
    • /
    • 2015
  • IoT(Internet of Things)에 대한 관심과 함께 웨어러블 디바이스 또한 차세대 융합 기술의 핵심으로 그 관심이 증가하고 있다. 특히, 초기 단계인 스마트워치 시장의 선점을 위하여 여러 기업들이 경쟁하고 있으며, 사용자들은 이러한 경쟁 속에서 각 기기에 대한 의견을 SNS를 통하여 공유하며 그에 대한 선호도를 표출하고 있다. 따라서 본 논문에서는 스마트워치에 관련된 속성과 감성단어들에 대한 감성사전을 먼저 구축한 뒤 이를 토대로 의견 데이터 모델을 통하여 수집된 SNS의 데이터를 속성별로 분류한다. 이후 수집된 데이터를 자연언어 처리 기법을 이용하여 전반적 극성 및 속성별 극성을 판단하고 이를 통하여 각 스마트워치 리뷰에 대한 분석을 수행하고자 한다. 그리고 수집된 자료 분석을 통하여 사용자들이 선호하는 스마트워치의 속성을 파악할 수 있도록 하고 이를 통해 각 기기별 발전방향을 판단하는데 기여하도록 한다.

  • PDF