• 제목/요약/키워드: 의견단어

검색결과 79건 처리시간 0.012초

A Study on the Characteristics of Opinion Retrieval Using Term Statistical Analysis in Opinion Documents (의견 문서의 단어 통계 분석을 통한 의견 검색 특성에 관한 연구)

  • Han, Kyoung-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • 제15권11호
    • /
    • pp.21-29
    • /
    • 2010
  • Opinion retrieval which searches the opinions expressed in documents by users cannot outperform significantly yet traditional topical retrieval which searches the facts. Therefore, the focus of this paper is to identify the statistical characteristics which can be applied to opinion retrieval by comparing and analyzing the term statistics of opinion and non-opinion documents in the blog domain. The TREC Blogs06 collection and 150 TREC topics are used in the experiments. The difference between term probability distributions in opinion documents is measured by JS divergence, and the difference according to the topic types and topic domains is also investigated. Moreover, the term probabilities of opinion terms are analyzed comparatively. The main findings of this study include the following: it is necessary to consider the topic-specific characteristics for the opinion detection; it is effective to extract positive and negative opinion terms according to the topics; the topic types are complementary to the topic domains; and special attention has to be given to the usage of the positive opinion terms.

Experimental Study for Effective Combination of Opinion Features (효과적인 의견 자질 결합을 위한 실험적 연구)

  • Han, Kyoung-Soo
    • Journal of the Korean Society for information Management
    • /
    • 제27권3호
    • /
    • pp.227-239
    • /
    • 2010
  • Opinion retrieval is to retrieve items which are relevant to the user information need topically and include opinion about the topic. This paper aims to find a method to represent user information need for effective opinion retrieval and to analyze the combination methods for opinion features through various experiments. The experiments are carried out in the inference network framework using the Blogs06 collection and 100 TREC test topics. The results show that our suggested representation method based on hidden 'opinion' concept is effective, and the compact model with very small opinion lexicon shows the comparable performance to the previous model on the same test data set.

Opinion Mining of Product Reviews using Sentiment Phrase Patterns considered the Endings of Declinable Words (어미변화를 고려한 감성 구문 패턴을 이용한 상품평 의견 분류)

  • Kim, Jung-Ho;Cha, Myung-Hoon;Kim, Myung-Kyu;Chae, Soo-Hoan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.285-290
    • /
    • 2010
  • 인터넷이 대중화됨에 따라 누구나 쉽게 자신의 의견을 온라인상에 표현할 수 있게 되었다. 그 결과 생각이나 느낌을 나타내는 의견 데이터들의 양이 급속도로 방대해졌으며, 이러한 데이터들을 이용한 여러 응용 사례들의 등장으로, 효율적인 검색 및 자동 분류 기술이 요구되고 있다. 이런 기술적 흐름에 맞추어 의견 데이터 분류에 관한 여러 연구들이 이루어져 왔다. 이러한 의견 분류에 대한 연구들을 살펴보면, 분류를 위해 자질(Feature)로서 사용한 단일어(Single word)가 아닌 2개 이상의 N-gram 단어, 어휘 구문 패턴 및 통사 구문 패턴 등을 사용한다. 특히, 패턴은 단일어나 N-gram 단어에 비해 유연하고, 언어학적으로 풍부한 정보를 표현할 수 있기 때문에 이를 주요 연구 주제로 사용되었다. 그럼에도 불구하고, 이러한 연구들은 주로 영어에 대한 연구들이었으며, 한국어에 패턴을 적용하여 주관성을 갖는 문장을 분류하거나, 극성을 분류하는 연구들은 아직 미비하다. 한국어의 특색으로 한국어는 용언의 활용이 발달되어 있어, 어미의 변화가 다양하며, 그 변화에 따라 의미가 미묘하게 변화한다. 그러나 기존 한국어에 대한 의견 분류 연구들은 단어의 핵심 의미만을 파악하기 위해 어미 부분을 제거하고 어간만을 취해서 처리하여 어미에 대한 의미변화를 고려하지 못하므로 분류 정확도가 영어권에 연구 결과에 비해 떨어진다. 그래서 본 연구는 영어에 적용된 패턴을 이용한 기존 방법들을 정리하고, 그 방법들 중에서 극성을 지닌 문장성분 패턴을 한국어에 적용하였다. 그리고 어미의 변화에 대한 패턴을 추출하여 이 변화가 의견 분류의 성능에 미치는 영향을 분석하였다.

  • PDF

Answer Suggestion for Knowledge Search (지식검색의 답변 추천 시스템)

  • Lee, Hochang;Lee, Hyun Ah
    • Annual Conference on Human and Language Technology
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.201-205
    • /
    • 2012
  • 지식검색은 방대한 지식정보 데이터를 바탕으로 사용자의 질문에 대한 답변을 검색하는 시스템이다. 이러한 사용자 참여로 구축된 지식정보는 잘못된 답변으로 인한 신뢰성 부족과 중복 답변 등의 문제점이 있어, 원하는 답변을 찾기 위해서는 지식검색에서 다수의 답변을 읽고 그 답변의 진위여부를 판단해야만 한다. 만일 정답에 포함되는 단어나 어구가 답변들에서 나타내는 통계적 특성을 활용하여 사용자가 원하는 답변을 제시할 수 있다면, 지식검색의 효용성과 신뢰성이 크게 향상될 수 있다. 본 논문에서는 지식정보 데이터 분석을 통해 사용자의 질문의 유형을 단어, 목록, 도표, 글의 4가지 유형으로 분류하고, 각 분류에 대한 사용자 질의어의 답변을 요약하는 방식을 제안한다. 단어, 목록, 글 유형은 TF와 IDF, 어휘 간의 거리 정보를 통해서 중요 단어를 추출하여 각 유형에 적합한 형식의 답변을 사용자에게 제시한다. 도표형은 답변들에서 사용자의 의견 정보를 추출하여 의견 통계를 도표로서 제시한다.

  • PDF

Expansion of Candidate Lexical Score for Opinion Holder Identification (의견의 발안자를 찾기 위한 어휘점수의 부여와 확장)

  • Jung, Hun-Young;Kim, Jun-Gi;Lee, Ye-Ha;Lee, Jong-Hyeok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.291-294
    • /
    • 2010
  • 의견의 주체를 찾는 일은 의견 분석의 결과를 활용 하는데 있어 필수적인 분야이다. 본 논문은 발안자를 찾는 시스템의 성능을 높이기 위해 이전논문에 제안하였던 단어에 의견주체의 후보로서의 점수를 부여하는 방법을 개선하였고 미등록어 문제를 해결하기 위해 taxonomy에 의존하여 기존단어의 점수를 이용하는 방법을 제안하였다. 본 논문에서 제안한 방법은 Baseline과 비교하여 F1값이 18.9% 증가하였다.

  • PDF

Analyzing Comments of YouTube Video to Measure Use and Gratification Theory Using Videos of Trot Singer, Cho Myung-sub (YouTube 동영상 의견분석을 통한 사용과 충족 이론 측정 : 트로트 가수 조명섭 동영상을 중심으로)

  • Hong, Han-Kook;Leem, Byung-hak;Kim, Sam-Moon
    • The Journal of the Korea Contents Association
    • /
    • 제20권9호
    • /
    • pp.29-42
    • /
    • 2020
  • The purpose of this study is to present a qualitative research method for extracting and analyzing the comments written by YouTube video users. To do this, we used YouTube users' feedback to measure the hedonic, social, and utilitarian gratification of use and gratification theory(UGT) through by using analysis and topic modeling. The result of the measurement found that the first reason why users watch the trot singer, Cho Myung-sub's video in the KBS Korean broadcasting channel is to achieve hedonic gratification with high frequency. In word-document network analysis, the degree of centrality was high in words, such as 'cheering', 'thank you', 'fighting', and 'best'. Betweenness centrality is similar to the degree of centrality. Eigenvector centrality also shows that words such as 'love', 'heart', and 'thank you' are the most influential words of users' opinions. The results of the centrality analysis present that the majority of video users show their 'love', 'heart' and 'thank you' for the video. it indicates that the high words in centrality analysis is consistent with the high frequency words of hedonic and social gratification dimension of the UGT. The study has research methodological implication that shed light on the motivations for watching YouTube videos with UGT using text mining techniques that automate qualitative analysis, rather than following a survey-based structural equation model.

Deep Semantic Feature based Deceptive Opinion Spam Analysis (의미 프레임 자질 기반 의견 스팸 분석)

  • Kim, Seong-Soon;Jang, Hyeok-Yoon;Lee, Seong-Woon;Kang, Jaewoo
    • Annual Conference of KIPS
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.1001-1004
    • /
    • 2015
  • 소설미디어의 급증과 함께 온라인 리뷰의 의존성이 급증하는 가운데 사용자의 올바른 의사결정을 저해하는 기만적 의견 스팸 이슈가 새롭게 주목받고 있다. 기존의 의견 스팸 연구는 실제 리뷰와 의견 스팸 간의 차이를 어휘, 품사 또는 감정단어와 같은 표면적 자질을 통해 설명하였으나 그들간의 의미적 연결관계는 고려하지 않았다. 본 논문에서는 1) 의미적 프레임 기반의 텍스트 분석기법을 제안하고, 이를 바탕으로 2) 의견 스팸과 실제 리뷰간의 의미적 차이가 있음을 규명하며 3) 새로운 의미적 프레임 자질을 사용하여 기존의 의견 스팸 분류 성능을 향상시킬 수 있음을 보인다.

Measuring a Valence and Activation Dimension of Korean Emotion Terms using in Social Media (소셜 미디어에서 사용되는 한국어 정서 단어의 정서가, 활성화 차원 측정)

  • Rhee, Shin-Young;Ko, Il-Ju
    • Science of Emotion and Sensibility
    • /
    • 제16권2호
    • /
    • pp.167-176
    • /
    • 2013
  • User-created text data are increasing rapidly caused by development of social media. In opinion mining, User's opinions are extracted by analyzing user's text. A primary goal of sentiment analysis as a branch of opinion mining is to extract user's opinions from a text that is required to build a list of emotion terms. In this paper, we built a list of emotion terms to analyse a sentiment of social media using Facebook as a representative social media. We collected data from Facebook and selected a emotion terms, and measured the dimensions of valence and activation through a survey. As a result, we built a list of 267 emotion terms including the dimension of valence and activation.

  • PDF

The Comparison of Indicators for Selecting Familiar Labels of Information Items in Web Pages (친숙한 웹 페이지 정보 항목명 선택을 위한 지표 비교)

  • Cho, In-Ho;Kim, Hyoung-Rae
    • Journal of Internet Computing and Services
    • /
    • 제12권1호
    • /
    • pp.111-118
    • /
    • 2011
  • While sharing information through Internet by Web page or XML, familiar labels of information items will reduce the confusion among users. The advises of the language experts for choosing familiar terms may cost money and time, but an automated Indicator can help a user select right terms without any cost. This paper collects Indicators that can be easily found over Internet and compares the efficiency of them for selecting familiar terms. The collected indicators are the number of words in a term, the frequency used in a related Web sites, and the number of search results in portal sites. The results conclude that the found terms by the frequency matches 76% for women's and 71% for men's, which tells that the frequency can be a reference for selecting familiar terms.

Fusion Approach to Targeted Opinion Detection in Blogosphere (블로고스피어에서 주제에 관한 의견을 찾는 융합적 의견탐지방법)

  • Yang, Kiduk
    • Journal of Korean Library and Information Science Society
    • /
    • 제46권1호
    • /
    • pp.321-344
    • /
    • 2015
  • This paper presents a fusion approach to sentiment detection that combines multiple sources of evidence to retrieve blogs that contain opinions on a specific topic. Our approach to finding opinionated blogs on topic consists of first applying traditional information retrieval methods to retrieve blogs on a given topic and then boosting the ranks of opinionated blogs based on the opinion scores computed by multiple sentiment detection methods. Our sentiment detection strategy, whose central idea is to rely on a variety of complementary evidences rather than trying to optimize the utilization of a single source of evidence, includes High Frequency module, which identifies opinions based on the frequency of opinion terms (i.e., terms that occur frequently in opinionated documents), Low Frequency module, which makes use of uncommon/rare terms (e.g., "sooo good") that express strong sentiments, IU Module, which leverages n-grams with IU (I and you) anchor terms (e.g., I believe, You will love), Wilson's lexicon module, which uses a collection-independent opinion lexicon constructed from Wilson's subjectivity terms, and Opinion Acronym module, which utilizes a small set of opinion acronyms (e.g., imho). The results of our study show that combining multiple sources of opinion evidence is an effective method for improving opinion detection performance.