• Title/Summary/Keyword: 응축 열전달

Search Result 223, Processing Time 0.024 seconds

Condensing Heat Transfer of Natural Refrigerants with Nanoparticles in Enhanced Tube (나노입자를 포함한 자연냉매의 마이크로 휜관 응축 열전달 특성)

  • Lee, H.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.19-25
    • /
    • 2008
  • This paper deals with the heat transfer and pressure drop characteristics of R-290 (Propane), R-600a (Iso-butane) and R-1270 (Propylene) as an environment friendly refrigerant and R-22 as a HCFC's refrigerant for condensing. The test section is a horizontal double pipe heat exchanger. Condensing heat transfer and pressure drop measurements were Peformed for 12.70 mm micro-fin tube and compared with the results in smooth tube. The local condensing heat transfer coefficients of hydrocarbon refrigerants were superior to those of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-600a. The average condensing heat transfer coefficients in hydrocarbon refrigerants showed 20 to 28% higher values than those of R-22. Hydrocarbon refrigerants have a higher pressure drop than that of R-22 with respect to refrigerant qualify and mass flux. Also, the condensing heat transfer coefficient and pressure drop of working fluids in smooth and micro-fin tube were compared. The heat transfer enhancement factor (EF) between smooth and micro-fin tube varied from 2.2 to 2.6 in all experimental conditions.

  • PDF

The Effect of PVE Oil on the Evaporation/Condensation Heat Transfer Performance of Fin-tube Heat Exchanger (핀-튜브 열교환기에서 PVE오일이 증발/응축 열전달 성능에 미치는 영향)

  • Lee, Hyun-Woo;Jeong, Young-Man;Lee, Jae-Keun;Park, Nae-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1067-1072
    • /
    • 2009
  • In vapor compression systems which use refrigerant as a working fluid, the oil is commonly used for compressor lubrication. Since the presence of lubrication oil can change the characteristics properties of refrigerant, the oil affects the heat transfer performance of heat exchanger to a large extent. In this paper, we focus on the effect of PVE oil experimentally on heat transfer performance of the fin-tube heat exchangers which use R410A as a refrigerant. To evaluate the heat transfer performance, the refrigerant to air type test facility chamber has been used. Fin-tube heat exchanger with grooved has been tested while according to the oil mass fraction variation from nearly zero to 1.7 wt%. It was found that the low level of oil mass fraction has an obvious effect on heat transfer performance, while the high level seems no significant influence. The influence of the oil mass fraction to heat transfer performance, however, is different between evaporation and condensation.

  • PDF

Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation (막응축 열전달에서 공기-수증기 혼합기체의 속도 및 온도분포)

  • 강희찬;김무환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2675-2685
    • /
    • 1994
  • A study has been conducted to provide the experimental information for the velocity and temperature profiles of steam-air mixutre and to investigate their roles on the film condensation with wavy interface. Saturated gas mixture of steam-air was made to flow through the nearly horizontal$(4.1^{\circ})$ square duct of 0.1m width and 1.56m length at atmospheric pressure, and was condensated on the bottom cold plate. The air mass fraction in the gas mixture was changed from zero(W =0, pure steam) to one(W =1, pure air), and the bulk velocity was varied from 2 to 4 m/s. Water film was injected concurrently to investigate the effect of wavy interface on the condensation. The velocity and temperature profiles were measured by LDA system and thermocouples along the three parameters ; air mass fraction, mixture velocity and film flow rate. The profiles moved toward the interface with increasing steam mass fraction, mixture velocity and film flow rate. The Prandtl and Schmidt numbers were near one in the present experimental range, however there was no complete similarity between the velocity and temperature profiles of gas mixture. And the heat transfer characteristics and interfacial structure were coupled with each other.

Characteristics of Condensing Heat Transfer and Pressure Drop of HCs Refrigerants (탄화수소계 냉매의 응축 열전달 및 압력강하 특성)

  • Lee, Ho-Saeng;Lee, Kwang-Bae;Moon, Choon-Geun;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1143-1148
    • /
    • 2005
  • Experimental results for heat transfer characteristic and pressure gradient of HCs refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 during condensing inside horizontal double pipe heat exchangers are presented. The test sections which have one tube diameter of 12.70 mm with 0.86 mm wall thickness, another tube diameter of 9.52 mm with 0.76 mm wall thickness are used for this investigation. The local condensing heat transfer coefficients of hydrocarbon refrigerants were higher than those of R-22. The average condensing heat transfer coefficient increased with the increase of the mass flux. It showed the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than those of R-22 in 12.7 mm and 9.52 mm. This results from the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

  • PDF

Comparative Study of Condensation Heat Transfer Coefficients between R404A and R152a Flow in a Horizontal Smooth Tube (수평 평활관내 R404A와 R152a 냉매 유동의 응축 열전달 계수에 대한 비교 연구)

  • Lee, Sang-Yong;Kim, Man-Hoe;Lee, Chi-Young
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.256-261
    • /
    • 2005
  • In the present experimental study, condensation heat transfer coefficients between R404A and R152a flow in a horizontal smooth tube were compared. The outer and inner diameters of the tube were 9.52 mm and 7.55 mm, respectively, and the heated length was 1045 mm. The mass flux ranged from 150 to 400 $kg/m^{2}s$ and the test section were uniformly heated from 8 to 12. $kW/m^2$. The quality range was from 0.2 to 0.8 at the saturation temperature from 27.3 to $34^{\circ}C$. Experimental condensation heat transfer coefficients increased as the quality and mass flux increased. Modified Dobson and Chato correlation reduced the mean deviation of 5.1% for R404A and 9.4% for R152a than the original correlation$^{(2)}$.

  • PDF

Experimental Study on Condensation Heat Transfer Characteristics of Special Heat Transfer Tubes (응축용 특수 전열관의 열전달 특성에 관한 연구)

  • 한규일;박종운;권영철;조동현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.827-835
    • /
    • 2001
  • In this study, condensation heat transfer characteristics were conducted with special heat transfer tubes of SH-C type. Experiments were carried out the saturated vapor temperature of 334K and the wall subcooling of 1.5-4.5K. The refrigerant was R-113 and the enhanced tubes used in the present study were SH-CDR, SH-CYR and SH-CHR. The experimental results showed that the condensation heat transfer coefficients of SH-C type tubes were about 23-66% higher than those of a low integral-fin tube. It was visualized that the condensed liquid on the outer surface of SH-C type tubes flowed continuously down unlike a low integral-fin tube and a plain tube, due to a 3-D extending fin on the outer surface of SH-C type tubes. As a result, the thermal resistance of the condensed liquid decreased and the heat transfer coefficient increased. Also, the enhancement ratio of SH-CDR tube was the highest, and it was about 9-11 times as compared to that of a plain tube.

  • PDF

Study on the Condensation Heat Transfer Characteristics in Small Diameter Tubes (세관 내 응축 열전달 특성에 관한 연구)

  • 박기원;노건상;홍진우;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.29-38
    • /
    • 2004
  • The Condensation heat transfer coefficients of R-22 and R-l34a were measured in smooth horizontal copper tubes with inner diameters of 1.77. 3.36 and 5.35 mm. respectively. The experiments were conducted in a closed loop. which was driven by a magnetic gear pump. They were Performed for the following ranges of variables: mass flux (200 to $500\;kg/\textrm{m}^2{\cdot}s$) saturation temperature $30^{\circ}C$ and quality (0 to 1.0). The main results obtained are as follows Condensation heat transfer coefficients in the small diameter tubes (ID < 7 mm) were observed to be strongly affected by inner diameter change and to differ from those in the large diameter tubes. The heat transfer coefficients in the small diameter tubes were 20 ~ 40 % higher than those in the large diameter tubes as the inner diameter of the tube was reduced. Also. it was very difficult to apply some well-known previous predictions (Cavallini-Zecchin's. Haraguchi's and Dobson's correlation) to small diameter tubes. Based on an analogy between heat and mass transfer the new correlation is Proposed to predict the experimental data more accurately.

Flow Condensation Inside Mini-Channels (II) -Experimental Study of the Circular and Rectangular Channels- (작은 유로 내에서의 흐름응축 열전달 (II) -원형 및 사각유로에서의 실험적 연구-)

  • Shin, Jeong-Seob;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1432-1439
    • /
    • 2004
  • By using unique experimental techniques and careful construction of the experimental apparatus, the characteristics of the local heat transfer were investigated using the condensing R134a two-phase flow, in horizontal single mini-channels. The circular channels (D$_{h}$=0.493, 0.691, and 1.067 mm) and rectangular channels (Aspect Ratio=1.0, D$_{h}$=0.494, 0.658, and 0.972 mm) were tested and compared. Tests were performed for a mass flux of 100, 200, 400, and 600 kg/$m^2$s, a heat flux of 5 to 20 ㎾/$m^2$, and a saturation temperature of 4$0^{\circ}C$. In this study, effect of heat flux, mass flux, vapor qualities, hydraulic diameter, and channel geometry on flow condensation are investigated and the experimental local condensation heat transfer coefficients are shown. The experimental data of condensation Nusselt number are compared with existing correlations.ons.

Condensation Heat Transfer Characteristics and Pressure Drop of R-290, R-600a, and R-22 in Horizontal Smooth Pipes with a Small Diameter (수평평활 세관 내에서의 R-290, R-600a, R-22의 응축열전달과 압력강하 특성)

  • Roh, Geon-Sang;Son, Chang-Hyo
    • Clean Technology
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • The condensation heat transfer coefficients and pressure drops of hydrocarbon refrigerants (R-290 and R-600a) and hydrochlorofluorocarbon (HCFC) refrigerants were measured in the two horizontal double pipe heat exchangers with inner diameters of 10.07 mm and 5.80 mm at a mass flux of $35.5{\sim}210.4\;kg/m^2s$ and the condensation temperature of $40^{\circ}C$. The average condensation heat transfer coefficients of hydrocarbon refrigerants were higher than that of HCFC refrigerant(R-22). The pressure drop had a magnitude in the order of R-600a > R-290 > R-22. The pressure drops in the tubes with inner diameter of 10.07 mm were approximately $6{\sim}15%$, $9.8{\sim}12.5%$ and $2.1{\sim}4.6%$ higher for R-600a, R-290 and R-22, respectively, than those with inner diameter of 5.80 mm. The condensation heat transfer coefficients were compared with the published experimental data, and showed the best agreement with Haraguchi et al.'s correlation.

  • PDF

Numerical Study of the Heat Removal Performance for a Passive Containment Cooling System using MARS-KS with a New Empirical Correlation of Steam Condensation (새로운 응축열전달계수 상관식이 적용된 MARS-KS를 활용한 원자로건물 피동냉각계통 열제거 성능의 수치적 연구)

  • Jang, Yeong-Jun;Lee, Yeon-Gun;Kim, Sin;Lim, Sang-Gyu
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-35
    • /
    • 2018
  • The passive containment cooling system (PCCS) has been designed to remove the released decay heat during the accident by means of the condensation heat transfer phenomenon to guarantee the safety of the nuclear power plant. The heat removal performance of the PCCS is mainly governed by the condensation heat transfer of the steam-air mixture. In this study, the heat removal performance of the PCCS was evaluated by using the MARS-KS code with a new empirical correlation for steam condensation in the presence of a noncondensable gas. A new empirical correlation implemented into the MARS-KS code was developed as a function of parameters that affect the condensation heat transfer coefficient, such as the pressure, the wall subcooling, the noncondensable gas mass fraction and the aspect ratio of the condenser tube. The empirical correlation was applied to the MARS-KS code to replace the default Colburn-Hougen model. The various thermal-hydraulic parameters during the operation of the PCCS follonwing a large-break loss-of-coolant-accident were analyzed. The transient pressure behavior inside the containment from the MARS-KS with the empirical correlation was compared with calculated with the Colburn-Hougen model.