• Title/Summary/Keyword: 응집체

Search Result 330, Processing Time 0.028 seconds

Diluted Synthesis of Manocrystalline CeO2 by Mechanical Milling (희석혼합체의 기계적 분쇄에 의한 나노 CeO2의 합성)

  • Lim, Geon-Ja;Kim, Tae-Eun;Lee, Jong-Ho;Lee, Hae-Weon;Rhee, Dong-Joo;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.764-768
    • /
    • 2002
  • The nanocrystalline $CeO_2$ was synthesized by mechanical milling and subsequent heat-treatment with the mixture of $Ce(OH)_4$ precursor and diluent, NaCl. Using deionized water, the diluent, NaCl, in the mixture has been easily dissolved out. Diffusion barrier was provided by the diluent during heat-treatment, which suppressed not only the coarsening of primary particle but also the agglormeration between the particles. Crystallite and aggregate size of $CeO_2$ depended on the concentration of diluent, temperature and time of heat-treatment; increased with the temperature and time increases. In case the mixture was heat-treated at high than $600^{\circ}C$, however, the crystallite size was saturated near 20 nm, which was supposed to be due to the densification of diluent.

Adhesion and Agglomeration Phenomena of Pt Film of Resistance Heat Source (저항열원체 Pt 박막의 밀착력과 응집화 현상)

  • Lee, Jae-Seok;Park, Hyo-Deok;Sin, Sang-Mo;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.2
    • /
    • pp.204-209
    • /
    • 1996
  • 각종 전자부품에 이용되는 백금막의 밀착력과 응집화 현상에 대해 연구하였다. 온도저항계수(TCR)의 열화 없이 밀착력을 향상 시키기 위해서 AI, Si의 산화물을 adhesion promoting layer로 이용한 결과 매우 우수한 밀착력과 TCR을 보였다. 질소분위기 600-90$0^{\circ}C$의 온도범위에서 행한 열처리를 통해 응집화현상을 관찰한 결과 응집화는 기판거칠기에 따라 다른 양상을 보였다. Si3N4등의 기판거칠기가 작은 adhesion promoting layer를 이용한 시편의 경우 고온인 90$0^{\circ}C$에서 응집화 현상이 발생되었다. 표면거칠기가 큰 AI-Si 산화물을 adhesion promoting layer로 이용한 시편의 경우 비교적 저온인 $600^{\circ}C$에서 응집화 현상이 발생했으며 80$0^{\circ}C$이상의 열처리의 경우 중앙응집체와 응집체고갈지역이 형성되는 현상을 나타내었다.

  • PDF

Solution properties of sodium n-dodecyl sulfate in the presence of meso-tetrakis (N-methylpyridinium-4-yl) porphyrin (Meso-tetrakis (N-methylpyridinium-4-yl) porphyrin 존재 하에서 sodium n-dodecyl sulfate 용액 성질)

  • Hassanpour, Azin;Azani, Mohammad-Reza;Bordbar, Abdol-Khalegh
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.335-340
    • /
    • 2011
  • The solution properties of sodium n-dodecyl sulfate, as an anionic surfactant in the presence of a cationic watersoluble 5, 10, 15, 20-tetrakis (N-methylpyridinium-4-yl) porphyrin (TMPyP) has been comprehensively studied by means of conductometry, UV-vis and resonance light scattering (RLS) spectroscopies. The results represent the decreasing of critical micelle concentration of SDS solution due to increasing of TMPyP concentration. The stabilization of SDS micelle is due to neutralization of negative charge at the micelle surface. The presence of three different species of TMPyP in SDS solution has been unequivocally demonstrated: free porphyrin monomers, porphyrin monomers or aggregates bound to the micelles, and nonmicellar porphyrin/surfactant aggregates. Our results show SDS induced an aggregation in TMPyP. In fact two kinds of J-aggregations were observed: one of them for porphyrin monomers or aggregates bound to the micelles and the other for nonmicellar porphyrin/surfactant aggregates. However, the results represent the electrostatic interaction of TMPyP with SDS anion below the cmc.

자기조립법에 의한 산화철 중공구조의 합성과 에탄올 감응특성

  • Kim, Hyo-Jung;Kim, Hae-Ryong;Choe, Gwon-Il;Kim, Il-Du;Lee, Jong-Heun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.25.3-25.3
    • /
    • 2011
  • 반도체형 가스센서의 가스 감응은 산화물 표면과 주변 가스와의 화학적 반응에 기인한 것이므로 나노 크기의 감응물질 입자를 합성하여 비표면적을 넓히려는 연구가 많이 진행되어 왔다. 일반적으로 감응 물질의 크기가 나노 스케일로 감소하면 가스 감응 특성이 증가하지만, 심한 응집으로 가스 확산이 어려워 가스 감응 특성이 저하되게 된다. 따라서 비표면적이 크면서도 응집이 덜한 나노 구조체가 산화물 가스 센서에 이용되어 왔다. 특히 중공구조는 응집이 적고 가스확산이 용이하며 큰 비표면적을 가지기 때문에 널리 연구되어진 나노구조체이다. 한편 산화철은 친환경적인 n-type 반도체로써 에너지 저장소, 촉매, 리튬-이온 배터리의 양극물질, 가스센서 등의 응용분야에 널리 이용되고 있다. 본 연구에서는 Solvothermal에 의한 자기조립 방법으로 산화철 중공구조를 합성하고 기능화를 위해 귀금속 촉매인 Pt를 첨가하였다. $400^{\circ}C$에서 에탄올 가스에 대한 가스 감응 측정을 통해 대조군인 산화철 응집체와 나노 스케일의 구에 비해 중공구조가 가스 감응에 유리함을 보고한다.

  • PDF

Computer simulation of agglomeration in colloidal alumina powder suspension (콜로이드성 알루미나 분말 입자의 응집현상의 컴퓨터 시뮬레이션)

  • 김종철;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.224-230
    • /
    • 1999
  • Agglomeration of colloidal alumina particles in a suspension is simulated. Particles in a suspension have potential energies between them and move to decrease the summation of all the potential energies between particles. The effects of various types of potential curves on particle agglomeration were checked. Strong short range attractive energy without repulsive energy barrier makes small strong clusters with disordered network structure but weak short-range force with big repulsive energy barrier makes big agglomerates with a close packing structure. As particles are agglomerated the potential energy with strong repulsive energy barrier between agglomerates gradually decreases the importance of the repulsive energy barrier and induces a different type of agglomeration behavior.

  • PDF

Prediction of the Mechanical Erosion Rate Decrement for Carbon-Composite Nozzle by using the Nano-Size Additive Aluminum Particle (나노 알루미늄 입자 첨가 추진제에 의한 탄소복합재 노즐의 기계적 삭마 감소 특성 예측)

  • Tarey, Prashant;Kim, Jaiho;Levitas, Valeny I.;Ha, Dongsung;Park, Jae Hyun;Yang, Heesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.42-53
    • /
    • 2015
  • In this study, the influence of Al particle size, as an additive for solid propellant, on the mechanical erosion of the carbon-composite nozzle was evaluated. A new model which can predict the size and distribution of the agglomerated reaction product($Al(l)/Al_2O_3(l)$) was established, and the size of agglomerate were calculated according to the various initial size of Al in the solid propellant. With predicted results of the model, subsequently, the characteristics of mechanical erosion on the carbon-composite nozzle was estimated using a commercial CFD software, STAR CCM+. The result shows that the smaller the initial Al particles are, in the solid propellant, the lower is the mechanical erosion rate of the composite nozzle wall, especially for the nano-size Al particle.

Structural Analysis of Microphase-separated Aggregates of Polyester/Polyhedral Oligomeric Silsesquioxane Nanocomposite by Laser Light Scattering (레이저 광산란법에 의한 폴리에스터/실세스키옥세인 나노복합재료 응집체의 구조분석)

  • Yu, Young-Chol;Kim, Jang-Kyung;Yoon, Kwan-Han;Park, Il-Hyun
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.461-468
    • /
    • 2007
  • In order to understand the structure of the existing aggregate in the nanocomposite, which has been prepared with polyester and trisilanolisobutyl polyhedral oligomeric silsesquioxane(TBPOSS), laser light scattering(LLS) and SEM-EDS were applied to its 1,1,1,3,3,3-hexafluoro-2-propanol solution and original sample, respectively. Although aggregate particles appeared as spherical shape of the average diameter of 120 nm in SEM image, they were not microgels but almost linear copolymer chains ($M_w=2.3{\times}10^6\;g/mol$) alternating 320 molecules of TBPOSS with polyester subchains. It has been microphase-separated from the matrix polyester due to the difference of chemical composition. As the matrix, polyester chain of $M_w=4.0{\times}10^4\;g/mol$ had averagely 2.5 molecules of TBPOSS per chain. It is also found that about 93% of total TBPOSS molecules existed in matrix phase and the residual 7% in spherically aggregated phase.

A Study on the Characterization of Neodymium Oxalate by Reaction Crystallization (반응성 결정화에 의한 네오디뮴 옥살레이트 특성 고찰)

  • Yoon, Ho-Sung;Kim, Chul-Joo;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.13 no.5
    • /
    • pp.37-44
    • /
    • 2004
  • In this study, neodymium oxalate powders were prepared by injecting oxalic acid to the neodymium chloride solution resulted from the acid leaching solution of NdFeB magnet scrap. The effect of experimental conditions on the characteristics of neodymium oxalate powders were investigated. Neodymium oxalate was aggregated by primary particles formed by nucleation, and average size of aggregates was affected by experimental conditions. In a constant volume, increase of reactants affected the average size of aggregate formed by collision of primary particles. In a constant concentration of reactants, agitation speed decreased the size of aggregate due to breakage of particles attached on the surface of aggregate. The number of primary particles decreased with increasing reaction temperature, and the size of aggregates decreased due to the decrease of collision probability. From the results of decomposition behavior of neodymium oxalate, oxalate decomposed from $400^{\circ}C$, and neodymium oxide began to crystallize at above $620^{\circ}C$.

Numerical Simulation for the Aggregation of Charged Particles (하전입자의 응집성장에 대한 수치적 연구)

  • Park, Hyung-Ho;Kim, Sang-Soo;Chang, Hyuk-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.605-611
    • /
    • 2001
  • A numerical technique for simulating the aggregation of charged particles was presented with a Brownian dynamic simulation in the free molecular regime. The Langevin equation was used for tracking each particle making up an aggregate. A periodic boundary condition was used for calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered the thermal force and the electrostatic force for the calculation of the particle motion. The morphological shape of aggregates was described in terms of the fractal dimension. The fractal dimension for the uncharged aggregate was $D_{f}=1.761$. The fractal dimension changed slightly for the various amounts of bipolar charge. However, in case of unipolar charge, the fractal dimension decreased from 1.641 to 1.537 with the increase of the average number of charges on the particles from 0.2 to 0.3 in initial states.

  • PDF

The Effect of the Fiber Volume Fraction Non-uniformity and Resin Rich Layer on the Rib Stiffness Behavior of Composite Lattice Structures (섬유체적비 불균일 및 수지응집층이 복합재 격자 구조체 리브의 강성도 거동에 미치는 영향)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Kim, Mun-Guk;Go, Eun-Su;Lee, Sang-Woo
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.161-170
    • /
    • 2018
  • Cylindrical composite lattice structures are manufactured by filament winding process. The fiber volume fraction non-uniformity and resin rich layers that can occur in the manufacturing process affect the stiffness and strength of the structure. Through the cross-section examination of the hoop and helical ribs, which are major elements of the composite lattice structure, we observed the fiber volume fraction non-uniformity and resin rich layers. Based on the results of the cross-section examination, the stiffness of the ribs was analyzed through the experimental and theoretical approaches. The results show that the fiber volume fraction non-uniformity and resin rich layers have an obvious influence on the rib stiffness of composite lattice structure.