• Title/Summary/Keyword: 응용개발도구

Search Result 564, Processing Time 0.029 seconds

A spectrum based evaluation algorithm for micro scale weather analysis module with application to time series cluster analysis (스펙트럼분석 기반의 미기상해석모듈 평가알고리즘 제안 및 시계열 군집분석에의 응용)

  • Kim, Hea-Jung;Kwak, Hwa-Ryun;Kim, Yu-Na;Choi, Young-Jean
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.41-53
    • /
    • 2015
  • In meteorological field, many researchers have tried to develop micro scale weather analysis modules for providing real-time weather information service in the metropolitan area. This effort enables us to cope with various economic and social harms coming from serious change in the micro meteorology of a metropolitan area due to rapid urbanization such as quantitative expansions in its urban activity, growth of population, and building concentration. The accuracy of the micro scale weather analysis modules (MSWAM) directly related to usefulness and quality of the real-time weather information service in the metropolitan area. This paper design a evaluation system along with verification tools that sufficiently accommodate spatio-temporal characteristics of the outputs of the MSWAM. For this we proposes a test for the equality of mean vectors of the output series of the MSWAM and corresponding observed time series by using a spectral analysis technique. As a byproduct, a time series cluster analysis method, using a function of the test statistic as the distance measure, is developed. A real data application is given to demonstrate the utility of the method.

Distance measurement System from detected objects within Kinect depth sensor's field of view and its applications (키넥트 깊이 측정 센서의 가시 범위 내 감지된 사물의 거리 측정 시스템과 그 응용분야)

  • Niyonsaba, Eric;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.279-282
    • /
    • 2017
  • Kinect depth sensor, a depth camera developed by Microsoft as a natural user interface for game appeared as a very useful tool in computer vision field. In this paper, due to kinect's depth sensor and its high frame rate, we developed a distance measurement system using Kinect camera to test it for unmanned vehicles which need vision systems to perceive the surrounding environment like human do in order to detect objects in their path. Therefore, kinect depth sensor is used to detect objects in its field of view and enhance the distance measurement system from objects to the vision sensor. Detected object is identified in accuracy way to determine if it is a real object or a pixel nose to reduce the processing time by ignoring pixels which are not a part of a real object. Using depth segmentation techniques along with Open CV library for image processing, we can identify present objects within Kinect camera's field of view and measure the distance from them to the sensor. Tests show promising results that this system can be used as well for autonomous vehicles equipped with low-cost range sensor, Kinect camera, for further processing depending on the application type when they reach a certain distance far from detected objects.

  • PDF

Politics of Technoscience and Science and Technology Governance in Korea (한국의 과학기술정치와 거버넌스)

  • Bak, Hee-Je;Kim, Eun-Sung;Kim, Jongyoung
    • Journal of Science and Technology Studies
    • /
    • v.14 no.2
    • /
    • pp.1-48
    • /
    • 2014
  • Recently, governance of science and technology emerged as one of most important social problems and as a result it is crucial to understand it in science and technology studies. This article discusses three most important realms in science and technology goverance - research and development, regulation, and social movement - in the concrete Korean contexts. First of all, the Korean state has driven research and development and promoted its commercialization unlike other developed countries. Consequently, this nationalistic view on science disseminated to Korean public and it generated uniformity in research style and organization. Second, science and technology regulations embraced developed countries' policies, leading to its glocalization. As a result, technocratic old governance and new governance including precautionary principle and participatory democracy coexist. Third, the civil society has challenged expertise and state-driven science and technology governance and fueled social movements related to environment, safety, and health issues. The politics of knowledge created by citizens' voluntary participation and collaborative experts made it clear that science and technology should be no longer tool for economic development. In conclusion, we discuss characteristics of science and technology governance in Korea, giving various implication on current research and policy.

  • PDF

A Domain Analysis Method for Saftware Product Lines Based an Goals, Scenarios, and Features (소프트웨어 프로덕트 라인을 위한 목표, 시나리오, 휘처 기반의 도메인 분석 방안)

  • Kim Min-Seong;Park Soo-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.7
    • /
    • pp.589-604
    • /
    • 2006
  • Software product lines (SPL) are recently an emerging software reuse paradigm, which helps organizations develop their products from reusable core assets rather than from scratch. For developing these assets, understanding commonality and variability (C&V) is essential. A feature-oriented approach has been used extensively for C&V analysis in the SPL. However, this contains no proposal to systematically identify features and provide the rationale for the features. Further, the approach does not directly show how the results of C&V analysis will satisfy an organization's high-level business goals and provide the rationale for the C&V. Therefore, this paper presents a domain analysis method for the SPL based on goals, scenarios, and features in order to overcome some of the deficiencies and limitations of the feature-oriented approach. In particular, the paper proposes a domain requirements model (DRM) and a domain requirements modeling method based on the DRM. This method has been applied to the home integration system (HIS) domain to demonstrate its feasibility with a supporting tool, namely IDEAS. Our approach makes it possible to systematically identify the features and provide the rationale for both the features and the C&V.

Scientific Objectives and Mission Design of Ionospheric Anomaly Monitoring by Magnetometer And Plasma-Probe (IAMMAP) for a Sounding Rocket in Low-Altitude Ionosphere (저고도 전리권 관측을 위한 사운딩 로켓 실험용 IAMMAP(Ionospheric Anomaly Monitoring by Magnetometer And Plasma-Probe)의 과학적 목표와 임무 설계)

  • Jimin Hong;Yoon Shin;Sebum Chun;Sangwoo Youk;Jinkyu Kim;Wonho Cha;Seongog Park;Seunguk Lee;Suhwan Park;Jeong-Heon Kim;Kwangsun Ryu
    • Journal of Space Technology and Applications
    • /
    • v.4 no.2
    • /
    • pp.153-168
    • /
    • 2024
  • Sounding rockets are cost-effective and rapidly deployable tools for directly exploring the ionosphere and microgravity environments. These rockets achieve their target altitudes quickly and are equipped with various scientific instruments to collect real-time data. Perigee Aerospace plans its inaugural test launch in the first half of 2024, followed by a second performance test launch in January 2025. The second launch, scheduled off the coast of Jeju Island, aims to reach an altitude of approximately 150 km with a payload of 30 kg, conducting various experiments in the suborbital region. Particularly in mid-latitude regions, the ionosphere sporadically exhibits increased electron densities in the sporadic E layers and magnetic fluctuations caused by the equatorial electrojet. To measure these phenomena, the sounding rocket version of ionospheric anomaly monitoring by magnetometer and plasma-probe (IAMMAP), currently under development at the KAIST Satellite Research Center, will be onboard. This study focuses on enhancing our understanding of the mid-latitude ionosphere and designing observable missions for the forthcoming performance tests.

Development of Applied Music Education Program for Creative and Convergent Thinking-With a Focus on the Capstone design Class (창의·융합적 사고를 위한 실용음악 교육프로그램 개발-캡스톤디자인 수업을 중심으로)

  • Yun, Sung-Hyo;Han, Kyung-hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.285-294
    • /
    • 2024
  • This study aims to enhance learners' creative and integrative thinking through the use of a practical music education program, facilitating high-quality artistic activities and the integration of various disciplines. To achieve this, a practical music education program incorporating the PDIE model was designed, and the content validity of the developed program was verified. Through this process, We have researched and described methodologies for multidisciplinary research that can be applied in practical music education. This paper focuses on the fourth session of the study, which deals with the creative and integrative education of practical music and mathematics. The mathematical theory of interest in this research is the Fibonacci sequence, fundamental to the golden ratio in art. The goal is to enable balanced and high-quality creative activities through learning and applying the Fibonacci sequence. Additionally, to verify the validity and effectiveness of the instructional plan, including the one used in the 15-week course, we have detailed the participants involved in the content validation, the procedures of the research, the research tools used, and the methods for collecting and analyzing various data. Through this, We have confirmed the potential of creative and integrative education in higher practical music education and sought to develop educational methodologies for cultivating various creative talents in subsequent research.

A study on the Change in the Characteristics of Fashion Design Created through the Use of Fashion Flat Drawing and Midjourney (패션 도식화와 미드저니의 활용을 통하여 생성한 패션디자인의 특징 변화 연구)

  • Park, Keunsoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.397-406
    • /
    • 2024
  • Today, in the field of contemporary fashion design, AI is being actively utilized as a new design tool, leading to a new paradigm of collaboration between designers and AI. This study is about a method for developing integrated fashion design through collaboration between human designers and AI. The purpose of this study is to analyze the visual and formative characteristics and changes of fashion design images generated using the AI generation program Midjourney, thereby expanding the understanding and utilization methods of AI image generation programs in fashion design development. The results of this study are as follows. First, Midjourney has the characteristic of relying more on the characteristics of the existing image used rather than the command when creating the image. It also creates new images by distributing and applying the design through an eclectic interaction between the costume and the image background. By excluding the names of fashion items from the commands, you can generate images that can give you more diverse ideas. Second, Midjourney initially expressed clothing colors using colors used in fashion schematics in color creation, and gradually expanded to various color series. Third, there is a kind of compromise between color and design when Midjourney creates an image, and accordingly, by specifying and limiting the image background and clothing colors, more diverse and advanced fashion design images can be created.

Use of Chicken Meat and Processing Technologies (가금육의 이용과 가공기술)

  • Ahn, Dong-Uk
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2003.07b
    • /
    • pp.67-88
    • /
    • 2003
  • The consumption of poultry meat (chicken and turkey) grew the most during the past few decades due to several contributing factors such as low price. product research and development. favorable meat characteristics, responsive to consumer needs, vertical integration and industry consolidation, new processing equipments and technology, and aggressive marketing. The major processing technologies developed and used in chicken processing include forming/restructuring, tumbling, curing, smoking, massaging, injection, marination, emulsifying, breading, battering, shredding, dicing, and individual quick freezing. These processing technologies were applied to various parts of chicken including whole carcass. Product developments using breast, thigh, and mechanically separated chicken meat greatly increased the utilization of poultry meat. Chicken breast became the symbol of healthy food, which made chicken meat as the most frequent menu items in restaurants. However, the use of and product development for dark meat, which includes thigh, drum, and chicken wings were rather limited due to comparatively high fat content in dark meat. Majority of chicken are currently sold as further processed ready-to-cook or ready-to-eat forms. Major quality issues in chicken meat include pink color problems in uncured cooked breast, lipid oxidation and off-flavor, tenderness PSE breast, and food safety. Research and development to ensure the safety and quality of raw and cooked chicken meat using new processing technologies will be the major issues in the future as they are now. Especially, the application of irradiation in raw and cooked chicken meat products will be increased dramatically within next 5 years. The market share of ready-to-eat cooked meat products will be increased. More portion controlled finished products, dark meat products, and organic and ethnic products with various packaging approaches will also be introduced.

  • PDF

Development of 3D Printed Snack-dish for the Elderly with Dementia (3D 프린팅 기술을 활용한 치매노인 전용 영양(수분)보충 식품섭취용기 개발)

  • Lee, Ji-Yeon;Kim, Cheol-Ho;Kim, Kug-Weon;Lee, Kyong-Ae;Koh, Kwangoh;Kim, Hee-Seon
    • Korean Journal of Community Nutrition
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2021
  • Objectives: This study was conducted to create a 3D printable snack dish model for the elderly with low food or fluid intake along with barriers towards eating. Methods: The decision was made by the hybrid-brainstorming method for creating the 3D model. Experts were assigned based on their professional areas such as clinical nutrition, food hygiene and chemical safety for the creation process. After serial feedback processes, the grape shape was suggested as the final model. After various concept sketching and making clay models, 3D-printing technology was applied to produce a prototype. Results: 3D design modeling process was conducted by SolidWorks program. After considering Dietary reference intakes for Koreans (KDRIs) and other survey data, appropriate supplementary water serving volume was decided as 285 mL which meets 30% of Adequate intake. To consider printing output conditions, this model has six grapes in one bunch with a safety lid. The FDM printer and PLA filaments were used for food hygiene and safety. To stimulate cognitive functions and interests of eating, numbers one to six was engraved on the lid of the final 3D model. Conclusions: The newly-developed 3D model was designed to increase intakes of nutrients and water in the elderly with dementia during snack time. Since dementia patients often forget to eat, engraving numbers on the grapes was conducted to stimulate cognitive function related to the swallowing and chewing process. We suggest that investigations on the types of foods or fluids are needed in the developed 3D model snack dish for future studies.

On-line Quality Assurance of Linear Accelerator with Electronic Portal Imaging System (전자포탈영상장치(EPID)를 이용한 선형가속기의 기하학적 QC/QA System)

  • Lee, Seok;Jang, Hye-Sook;Choi, Eun-Kyung;Kwon, Soo-Il;Lee, Byung-Yong
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.127-136
    • /
    • 1998
  • On-line geometrical quality assurance system has been developed using electronic portal imaging system(OQuE). EPID system is networked into Pentium PC in order to transmit the acquisited images to analysis PC. Geometrical QA parameters, including light-radiation field congruence, collimator rotation axis, and gantry rotation axis can be easily analyzed with the help of graphic user interface(GUI) software. Equipped with the EPID (Portal Vision, Varian, USA), geometrical quality assurance of a linear accelerator (CL/2100/CD, Varian, USA), which is networked into OQuE, was performed to evaluate this system. Light-radiation field congruence tests by center of gravity analysis shows 0.2~0.3mm differences for various field sizes. Collimator (or Gantry) rotation axis for various angles could be obtained by superposing 4 shots of angles. The radius of collimator rotation axis is measured to 0.2mm for upper jaw collimator, and 0.1mm for lower jaw. Acquisited images for various gantry angles were rotated according to the gantry angle and actual center of image point obtained from collimator axis test. The rotated images are superpositioned and analyzed as the same method as collimator rotation axis. The radius of gantry rotation axis is calculated 0.3mm for anterior/posterior direction (gantry 0$^{\circ}$ and 170$^{\circ}$) and 0.7mm for right/left direction(gantry 90$^{\circ}$ and 260$^{\circ}$). Image acquisition for data analysis is faster than conventional method and the results turn out to be excellent for the development goal and accurate within a milimeter range. The OQuE system is proven to be a good tool for the geometrical quality assurance of linear accelerator using EPID.

  • PDF