• Title/Summary/Keyword: 응력 집중

Search Result 842, Processing Time 0.023 seconds

Photoelastic analysis of the Stress distribution on an intervertebral disc (추간판 응력분포에 대한 광탄성 해석)

  • Shin, Hyun-Kug;Lee, Jae-Chang;Ahn, Myun-Whan;Ahn, Jong-Chul;Ihn, Joo-Chul
    • Journal of Yeungnam Medical Science
    • /
    • v.6 no.2
    • /
    • pp.223-239
    • /
    • 1989
  • To observe the change in the status of stresses according to three different postural angulation of an intervertebral disc with or without nucleus pulposus, 6 specimens of a 3-dimensional photoelastic model of the s pine were made of epoxy. The nucleus pulposus portion was replaced with silicon in three models, and the three were made without silicon. Through axial application of a vertical compressive load of 8kg, the peculiar patterns of the isochromatic fringes were observed. Stresses on the intervertebral disc were analyzed according to three different postural angulations of the intervertebral disc with the nucleus pulposus and without the nucleus pulposus. The results of these study are as follow : 1. In an erect neutral posture with the nucleus pulposus, the stress concentration was much increased at the posterior portion rather than at the anterior portion. Also, the high stress was concentrated at the medial and central portion. In an erect neutral posture without the nucleus pulposus, the stress concentration was much increased at the anterior portion rather than at the posterior portion and the stress distribution seemed to be locally concentrated. 2. In a maximal flexed posture, the stress concentration was much increased at the posterior portion rather than at the anterior portion. Comparing the presence of the nucleus pulposus with the absence of the nucleus pulposus, the stress concentration was lower at the anterior portion in the presence of the nucleus pulposus than in the absence of the nucleus pulposus. However, the stress distribution at the posterior portion was nearly same in the two groups. According to the analysis of the stress distribution diagram, as a whole, the stress pattern around the disc was evenly distributed. 3. In a maximal extended posture, the higher concentration of the stress distribution at the anterior and medial portion rather than in the posterior and lateral portion was observed. The stress concentration was higher in the presence of the nucleus pulposus than in the absence of the nucleus pulposus. 4. Comparing the maximal flexed posture with the erect neutral posture, the stress concentration in the flexed posture was much decreased in the posterior portion rather than in the erect neutral posture, and an even distribution of the stress pattern in the flexed posture was observed. 5. In the presence of the nucleus pulposus, at the anterior and posterior portion, the stress concentration in the flexed posture was much decreased compared with the extended posture. In the absence of the nucleus pulposus, at the anterior and posterior portion, the stress concentration in the extended posture was much decreased compared with the flexed posture.

  • PDF

Numerical Analysis off-Shape Cracking in Jointed Concrete Pavements (줄눈콘크리트 포장의 T형 균열 발생 원인 수치 해석)

  • Yun, Dong-Ju;Seo, Young-Guk;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.141-149
    • /
    • 2009
  • This study was conducted to investigate the causes that induce the T-shape cracks at the joints in the jointed concrete pavements(JCPs). The finite element models of JCP including dowel bars were developed and the stress distribution in the slab was investigated under environmental loads. To investigate the effect of dowel bars on the transverse stresses at the joints that induce the T-shape cracks, the slab curling behavior was analyzed with and without dowel bars. In addition, the stress concentration was investigated when the dowel bar was not installed at the mid-depth of the slab. The results of this study showed that the transverse stresses were not affected by the dowel bars if the dowel bars were installed at the mid-depth of the slab. However, if the dowel bars were not installed at the mid-depth, the transverse stresses were concentrated at the dowel bar locations when the slab curled. The stress concentration was dependent on the contact characteristics between the dowel bar and concrete, and was significantly large when the dowel bar not installed at the mid-depth was located far from the edge of the slab. Therefore, to mitigate T-shape cracking in JCP, dowel bars should be very carefully installed and leveled at the proper locations.

  • PDF

Effect of Various Parameters on Stress Distribution around Holes in Mechanically Fastened Composite Laminates (기계적으로 체결된 복합재료 평판에서 다양한 인자의 영향에 따른 원공 주위의 응력분포)

  • Choi Jae-Min;Chun Heoung-Jae;Byun Joon-Hyung
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2005
  • With the wide applications of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joints have become a very important research area because the joints are often the weakest areas in composite structures. This paper presents an analytical study of the stress distributions in mechanically single-fastened and multi-fastened composite laminates. The finite element models which treat the pin and hole contact problem using a contact stress analysis are described. A dimensionless stress concentration factor is used to compare the stress distributions in composite laminates quantitatively In the case of single-pin loaded composite laminate, the effects of stacking sequence, the ratio of a hole diameter and the width of a laminate (W/D ratio), the ratio of hole diameter and distance from edge to hole (E/D ratio), friction coefficient and clamping force are considered. In the case of multi-pin loaded composite laminate, the influence of the number of pins, pitch distance, number of rows, row spacing and hole pattern are considered. The results show that P/D ratio and E/D ratio affect more on stress distributions near the hole boundary than the other factors. In the case of multi-pin loaded composite laminate, the stress concentration in the double column case is better than the other cases of multi-pin loaded composite laminate.

Equivalent Stress Distribution of a Stepped Bar with Hole under Torsional Loading (구멍이 있는 단이 진 비틀림 봉의 등가응력분포)

  • Kang, Eun Hye;Kim, Young Chul;Kim, Myung Soo;Baek, Tae Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.411-419
    • /
    • 2017
  • Stress concentration is one of the causes of the damage due to the large stress than the mean stress acting on the bar. This paper presents the results for stress of a stepped bar with a hole under torsional loading. The analysis for stress concentration and shearing stress was done by ANSYS Workbench which is a commercial finite element analysis software. The analysis results on fillet and hole are increased as the distance between them are become close. In addition, the distribution of the maximum equivalent stress developed in the fillet and hole in the outside range of the specific distance L (-100 mm ~ 300 mm) was almost constant in the models used in the analysis. On the other hand, the distribution of the maximum equivalent stress developed in the fillet and hole in the inside range of the specific distance L (-100 mm ~ 300 mm) was rapidly increasing and decreasing the change in the models used in the analysis. In addition, it was also possible to identify the location where the differences between equivalent stresses of hole and fillet occurred within a specific distance L (-100 mm ~ 300 mm). The analysis results of paper can used when selecting a hole location in a stepped bar under torsional loading.

Derivation of Elastic Stress Concentration Factor Equations for Debris Fretting Flaws in Pressure Tubes of Pressurized Heavy Water Reactors (가압중수로 압력관 이물질 프레팅 결함의 탄성 응력집중계수 수식 도출)

  • Kim, Jong Sung;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.167-175
    • /
    • 2014
  • If volumetric flaws such as bearing pad fretting flaws and debris fretting flaws are detected in the pressure tubes of pressurized heavy water reactors during in-service inspection, the initiation of fatigue cracks and delayed hydrogen cracking from the detected volumetric flaws shall be assessed by using elastic stress concentration factors in accordance with CSA N285.8-05. The CSA N285.8-05 presents only an approximate formula based on linear elastic fracture mechanics for the debris fretting flaw. In this study, an engineering formula considering the geometric characteristics of the debris fretting flaw in detail was derived using two-dimensional finite element analysis and Kinectrics, Inc.'s engineering procedure with slight modifications. Comparing the application results obtained using the derived formula with the three-dimensional finite element analysis results, it is found that the results obtained using the derived formula agree well with the results of the finite element analysis.

Effects of Fiber Arrangements on Stress Distributions over the Transverse Cross Section of Unidirectionally Continuous Fiber-reinforced Composites (단방향 연속 섬유 복합재 횡단면에서 섬유 배열에 따른 응력 분포 변화)

  • Choi, Soohoon;Ji, Wooseok
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • Stress distributions dependent on fiber arrangements are studied using the two-dimensional representative volume element (RVE) model for uni-directionally continuous fiber-reinforced composites subjected to transverse tensile loading. It is easily expected that the stresses around the fibers are concentrated mainly due to the stiffness mismatch between the fiber and matrix materials. In this presentation, it is shown that the stresses are not always increased although the distance between two fibers is shortened. The 2D RVE models, originally having a regular hexagonal fiber array, is utilized to study the effect of the fiber locations on the stress distributions. As the central fiber is relocated, the stress distributions around the fiber are obtained through finite element analysis. It is found that the stresses around the fiber are strongly dependent on the fiber distance as well as the angle between the loading direction and the line connecting two fibers.

Parametric Study of K-Joint Offshore Structure (해양 구조물의 K-Joint 특성 연구)

  • Jo, Chul-Hee;Park, Kwan-Kyu;Im, Sung-Woo;Kim, Jun-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.51-56
    • /
    • 2007
  • The K-joint is one of the commonly applied element in offshore structures. Due to its structural configuration, the stress concentration occurs in the joint. Considering the important effect to the structural safety and the design optimization, a design guideline is strongly required. The main variables determining the configuration of K-joint including ${\alpha},\;{\beta},\;{\gamma},\;{\tau}$ and ${\theta}$ are closely investigated to find the individual effect to the Stress to K-joint. The maximum Stress of joint has been differed as per the variation of parameters. The parametric study has been numerically carried out and compare with the experimental data.

Numerical Analysis of Stress Field around Crack Tip under Impact Load (충격하중에 의해 크랙 주위에 형성되는 응력장에 관한 수치해석적 연구)

  • Hwang, Gap-Woon;Cho, Kyu-Zong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.450-460
    • /
    • 1996
  • To investigate the effect of stress wave propagation for crack tip, impact responses of two-dimensional plates with oblique cracks are investigated by a numerical method. In the numerical analysis, the finite element method is used in space domain discretization and the Newmark constant acceleration algorithm is used in time integration. According to the numerical results from the impact response analysis. it is found that the stress fields are bisected at the crack surface and the parts of stress intensity are moved along the crack face. The crack tip stress fields are yaried rapidly. The magnitude of crack tip stress fields are converted to dynamic stress intensity factor. Dynamic sress intensity factor appears when the stress wave has reached at the crack tip and the aspect of change of dynamic stress intensity factor is shown to be the same as the part of the flow of stress intensity.

Zircaloy의 요드 응력부식균열 속도 측정

  • 류우석;홍준화;국일현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.188-192
    • /
    • 1996
  • 재결정 Zircaloy-2의 요드에 의한 응력부식균열의 전파속도를 직류전압강하측정법 (DCPD, Direct Current Potential Drop)을 이용하여 측정하고 임계응력집중계수( $K_{ISCC}$)를 구하였다. 임계요드농도 이상인 0.01 MPa의 요드농도에서, $K_{ISCC}$는 300 $^{\circ}C$의 경우 약 15 MPa√m, 350 $^{\circ}C$의 경우 약 12 MPa√m의 응력계수였으며, plateau 구역에서의 균열속도는 $10^{-4}$~ $10^{-3}$ mm/sec 영역이었다.

  • PDF

Anchorage Zone Design of Precast Prestressed Concrete Bridges (프리캐스트 프리스트레스트 콘크리트 교량 구조물의 정착부 설계에 관한 연구)

  • 임동환;오병환;김수석
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.209-218
    • /
    • 1996
  • The purpose of the present study is to explore the effects of local reinforced type and to suggest reliable failure mechanism and the design criteria on the anchorage zones of the precast prestressed concrete bridges. To accomplish these objectives, a comprehensive experimental and analytical study has been conducted. From this study, the cracking and ultimate load capacities for spirally reinforced anchorage zone are found to be larger than those for orthogonal reinforced anchorage zone. This indicate the effectiveness of spiral reinforcement in controlling the cracking. And realistic failure mechanism and design criteria of prestressed anchorage zones based on the present study are suggested.