• Title/Summary/Keyword: 응력 범위

Search Result 697, Processing Time 0.022 seconds

Pillar Width of Twin Tunnels in Horizontal Jointed Rock Using Large Scale Model Tests (대형모형실험을 통한 수평 절리암반에서의 병설터널 이격거리)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.352-359
    • /
    • 2010
  • Stability of twin tunnels depends on the pillar width and the ground condition. In this study, large scale model tests were conducted for investigating the influence of the pillar width of twin tunnels on their behavior in the regular horizontal jointed rock mass. Jointed rocks was composed of concrete blocks. Pillar width of twin tunnels varied in 0.29D, 0.59D, 0.88D and 1.18D, where D is the tunnel width. During the test, pillar stress, lining stress, tunnel distortion, and ground displacement were measured. Lateral earth pressure coefficient was kept in a constant value 1.0. As a result, it was found that the pillar stress and the displacement of the ground and tunnel were increased by decreasing pillar width. The maximum displacement rate was measured just after the upper excavation in each construction sequence. And the maximum influence position was the right shoulder of the preceeding tunnel at the pillar side. It was also found that for the stability assessment the inner displacement was more critical than the crown displacement. The influence zone was formed at the pillar width 0.59D~0.88D that was smaller than 0.8D~2.0D, which was proposed by experience for a good ground condition. And it would be concluded that horizontal joints could also influence on the stability of the twin tunnels.

Analyses on Local-Seasonal Variations of Erosional Properties of Cohesive Sediments in Keum Estuary (금강 하구역 점착성 퇴적물 침식특성의 지엽적·계절적 변화 해석)

  • Yim, Shang Ho;Ryu, Hong-Ryul;Hwang, Kyu-Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.125-135
    • /
    • 2008
  • The purpose of this study is to quantify the erosion parameters of cohesive sediments in Keum Estuary. This study also involves the examinations on the local/seasonal variation of them in Keum Estuary and on their spatial variation comparing with those of other sites. As erosional properties of cohesive sediments are in general influenced largely by the physico-chemical properties of cohesive sediments themselves, this study also involves the qualitative analyses on the impact by the physico-chemical properties. Erosion tests have been performed under the uniform bed condition using the Chonbuk annular flume and total 16 tests have been carried out with various bed densities and bottom shear stresses. Experimental results show that the critical shear stress for erosion varies in the range of $0.19{\sim}0.41N/m^2$ and the coefficient of erosion rate varies in the range of $54.26{\sim}7.70mg/cm^2{\cdot}hr$, over the corresponding bulk-density range of $1.14{\sim}1.38g/cm^3$. While erosion parameters estimated for Keum estuary sediments are found to be remarkably different in quantity compared with those for cohesive sediments from other sites, their local/seasonal variabilities within Keum Estuary are found to be insignificant.

Interfacial Properties and Sensing of Carbon Nanofiber/Tube and Electrospun Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Micromechanical Technique (전기저항측정 및 미세역학시험법을 이용한 탄소나노섬유/튜브 및 전기방사된 나노섬유/에폭시 복합재료의 계면특성 및 감지능 연구)

  • Jung Jin-Gyu;Kim Sung-Ju;Park Joung-Man
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.21-26
    • /
    • 2005
  • Nondestructive damage sensing and load transfer mechanisms of carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites have been investigated by using electro-micromechanical technique. The electrospun PVDF nanofibers were also prepared as a piezoelectric sensor. The electro-micromechanical techniques were applied to evaluate sensing response of carbon nanocomposites by measuring electrical resistance under an uniform cyclic loading. Composites with higher volume content of CNT showed significantly higher tensile properties than neat and low volume$\%$ CNT composites. CNT composites showed humidity sensing within limited temperature range. CNT composites with smaller aspect ratio showed higher apparent modulus due to high volume content in case of shorter aspect ratio. Thermal treated electrospun PVDF nanofiber showed higher mechanical properties than the untreated case due to crystallinity increase, whereas load sensing decreased in heat treated case. Electrospun PVDF nanofiber web also showed sensing effect on humidity and temperature as well as stress transferring. Nanocomposites and electrospun PVDF nanofiber web can be applicable for sensing application.

Analysis of Debris Flow of Chun-cheon Landslide Area using Numerical Methods (수치해석을 통한 춘천 산사태지역 토석류 거동 분석)

  • Choi, Junghae
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • The characteristic of recent rainfall pattern in Korea is concentrated in summer season and it is very different compare with former characteristic. In 2011, there was heavy rainfall in Chuncheon city of northern part of Korea. Because of rainfall in short time, many landslides were occurred in narrow area and many people were killed by these landslides at that time. The purpose of this study is to calculate run-out distance of debris flow and analyze the movement properties of debris flow according to the elapsed time using numerical analysis method at that time. The debris 2D program, which is developed by prof. Liu in National Taiwan University, was used in this study. Run-out distance of debris flow was calculated under different yield strength conditions which were controlled by rainfall amount. The results reveal that absolute maximum velocity of the debris flow is about 8.1 m/s and maximum depth of debris flow is about 7 m when debris flow was occurred. The run-out distance after 500 sec is about 300 m from end of the valley. It is very well similar with actual debris flow run-out distance. From these results, we can presume the maximum velocity and depth of debris flow at that time.

Elastic Wave Velocity of Jumunjin Sand Influenced by Saturation, Void Ratio and Stress (포화도, 간극비 및 응력에 따른 주문진사의 탄성파 속도)

  • Lee, Jung-Hwoon;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.101-106
    • /
    • 2014
  • The penetration testing provides 1 dimensional profiles of properties applicable to limited investigation areas, although N-value has been linked to a wide range of geotechnical design parameters based on empirical correlations. The nondestructive test using elastic waves is able to produce 2 or 3 dimensional property maps by inversion process with high efficiency in time and cost. As both N-value and elastic wave velocities share common dominant factors that include void ratio, degree of saturation, and in-situ effective stress, the correlation between the two properties has been empirically proposed by previous studies to assess engineering properties. This study presents the experimentally measured elastic wave velocities of Jumunjin sands under at-rest lateral displacement condition with varying the initial void ratio and degree of saturation. Results show that the stress condition predominantly influences the wave velocities whereas void ratio and saturation determine the stress-velocity tendency. The correlation among the dominant factors is proposed by multiple regression analysis with the discussion of relative impacts on parameters.

Stress-strain Behavior of Sand Reinforced with Geocell (지오셀로 보강된 모래의 응력-변형 거동)

  • Yoon, Yeo-Won;Kim, Jae-Youn;Kim, Bang-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.27-37
    • /
    • 2003
  • In this research stress-strain behavior of composite geocell-soil systems under triaxial condition and the influence of strength due to the presence of geocell were studied. For the research a series of triaxial tests were carried out on sand specimens confined by flexible-walled single rubber cell. The diameter of all rubber cells placed at the center of the soil sample were 50 mm. Three rubber sizes, i.e. 35, 50 and 70 mm height, were applied to the soil specimen and the size of soil specimen was 50 mm in diameter and 100 mm in height. Three different densities of soil were used for the tests. In general, it was observed that the sand specimen develops an apparent cohesion due to the confinement by the geocell. The magnitude of this cohesion seemed to be dependent to the properties of the geocell material. The test results have shown that the geocell material for this research not only develops the apparent cohesion but also increases the angle of friction whereas geosynthetic material in the references showed only the increase of apparent cohesion. From the application of geocell-soil composites to the hyperbolic model, it was recognized that the determination of the peak strength influences the behavior of the geocell-soil composites.

  • PDF

Nonlinear Viscoelastic Behavior of Concentrated Polyisobutylene Solutions in Large Amplitude Oscillatory Shear Deformation (대진폭 전단변형하에서 폴리이소부틸렌 농후용액의 비선형 점탄성 거동)

  • 장갑식
    • The Korean Journal of Rheology
    • /
    • v.10 no.3
    • /
    • pp.173-183
    • /
    • 1998
  • 본 연구에서는 Advanced Rheometric Expansion System(ARES)를 사용하여 대진폭 진동 전단 변형하에서 발생하는 폴리이소부틸렌(PIB) 농후 용액의 비선형 점탄성 거동을 저 장탄성율과 동적점도의 변형량 의존성 및 응력파형의 fast Fourier transform(FFT) 해석을 통해 고찰하였다. 스트레인 진촉을 단계적으로 증가시키면서 측정한 동적 점탄성으로 부터 저장탄성율 및 동적점도의 선형응답한계를 결정하고 이들에 미치는 각주파수의 영향을 조사 하였다. 그리고 응력파형의 Fourier 전개로부터 유도되는 비선형 점탄성함수를 사용하여 비 선형 거동을 설명하였다. 끝으로 비선형 점탄성 거동의 정도를 나타내는 비선형 거동 지수 를 정의하고 이들에 미치는 각주파수의 영향에 대해 검토하였다. 이상의 연구를 통해 얻어 진 결과를 요약하면 다음과 같다.(1) 선형 응답한계는 고분자 용액의 특성시간의 역수보다 높은 각주파수 범위에서는 일정한 값을 유지하지만 특성시간의 역수보다 낮은 각주파수 영 역에서는 각주파수가 감소할수록 증가한다. (2)선형응답한계 이상의 대변형하에서는 3차비선 형 점탄성 함수 이상의 고차항의 영향이 크게 작용하며 이로인해 비선형 거동이 발생된다. (3) 스트레인 진폭을 단계적으로 증가시키면서 측정한 저장탄성율 및 동적점도의 변형량 의 존성은 응력파형의 Fourier transform으로부터 유도된 1차 비선형 점탄성 함수의 변형량 의 존성을 나타낸다 (4) 저장탄성율 및 동적점도의 변형량 의존성으로부터 유도된 비선형 거동 지수는 탄성적 서질과 점성적 성질에 대한 비선형 특성을 평가하기 위한 유요한 방법으로 인정된다. (5) 비선형 점탄성 거동의 정도를 나탄는 비선형 거동지수는 특정한 각주파수에서 최대치를 가지며 또한 탄성적 거동이 점성적 거동에 비해 더욱 큰 각주파수 의존성을 나타낸다.

  • PDF

Evaluation of Engineering Characteristics of Aggregate Base Materials and Developing the Empirical Correlation Model (입도조정기층 재료의 공학적 특성 평가 및 경험적 상관모형 개발)

  • Kweon, Gi-Chul;Lee, Seung-Jun;Lee, Ung-Se
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.115-121
    • /
    • 2010
  • To evaluate the engineering characteristics of aggregate base materials, cyclic triaxial, CBR and permeability tests were performed for 15 samples. The CBR values of aggregate base materials have wide range from 32 to 110(average 81) and the amount of swelling in submerged conditions has below 0.04mm. The Modulus of aggregate base materials were significantly affected by volumetric stress, linear volumetric model was best for fitting. The modulus of aggregate base materials were determined within range of 100MPa~600MPa, 80~270 and 0.1~0.6 for model coefficient $k_1$ and $k_2$ respectively. The empirical correlation model was suggested that prediction the modulus from the basic properties obtained from particle size distribution test and compaction test. The coefficient of determination of the proposed correlation model was 0.423 for model coefficient $k_1$, 0.920 for model coefficient $k_2$ and 0.872 for modulus with stress level.

Structural Integrity Evaluation of Reactor Pressure Vessel Bottom Head without Penetration Nozzles in Core Melting Accident (노심용융사고 시 관통노즐이 제거된 원자로용기 하부헤드의 구조 건전성 평가)

  • Lee, Yun Joo;Kim, Jong Min;Kim, Hyun Min;Lee, Dae Hee;Chung, Chang Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • In this paper, structural integrity evaluation of reactor pressure vessel bottom head without penetration nozzles in core melting accident has been performed. Considering the analysis results of thermal load, weight of molten core debris and internal pressure, thermal load is the most significant factor in reactor vessel bottom head. The failure probability was evaluated according to the established failure criteria and the evaluation showed that the equivalent plastic strain results are lower than critical strain failure criteria. Thermal-structural coupled analyses show that the existence of elastic zone with a lower stress than yield strength is in the middle of bottom head thickness. As a result of analysis, the elastic zone became narrow and moved to the internal wall as the internal pressure increases, and it is evaluated that the structural integrity of reactor vessel is maintained under core melting accident.

Liquefaction Strength of Silty Sand through Dynamic Triaxial Tests (진동삼축시험을 통한 실트질 모래의 액상화 강도에 대한 연구)

  • Park, Jong-Gwan;Kim, Sang-Gyu;Han, Seong-Gil
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.59-70
    • /
    • 1998
  • Samples of silty sands and hydraulic fill ground were investigated by dynamic triaxial teats in order to evaluate the liquefaction strengths. In the tests, (1) undisturbed and disturbed samples were prepared, (2) dynamic shear strengths were measured under isotropic and anisotropic condition, and (3) the test results were compared with the other results which were tested by domestic and foreign researchers. The liquefaction shear strengths under ismtropic test condition were presented in terms of the relative densities. The amount of silt under 30o hardly influenced on the liquefaction strength. In the test results of anisotropically consolidated samples the liquefaction strength was dependent on the magnitude of the effective consolidation ratio. These teat results show that the liquefaction strength of the silty sand in Korea went coast exists within the boundary of the values suggested by Seed and Peacock(1971).

  • PDF