• Title/Summary/Keyword: 응력 강도 계수

Search Result 623, Processing Time 0.027 seconds

Analysis of Effective Stress Parameter on Partially Saturated Soil via Hydro-Mechanical Behaviors (부분포화토의 침투와 흙의 거동에 따른 유효응력 계수 분석)

  • Kim, Jae-Hong;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.117-126
    • /
    • 2011
  • Based on thermodynamics, the mathematical framework governing the hydro-mechanical behavior of partially saturated soil is derived by using balance equations, and the numerical analysis through implementation of various effective stress definitions is performed. Effective stress on partially saturated soil describes the soil strength which is presented by the relationship between water content and soil suction. For the estimation of hydro-mechanical behavior on partially saturated soil, effective stress parameter ${\chi}$ defined from various literatures is especially analyzed to understand the conditions of constitutive equations regarding residual saturation and displacement of soil. As a result, effective stress parameter ${\chi}$ has an influence on the variation of matric suction in soil with an external load and seepage. However it was found that the effect of each parameter ${\chi}$ varies with residual degree of saturation, and that of each parameter ${\chi}$ decreased with decrease in displacement of soil caused by an external load.

Interfacial shear stresses and friction factors in nearly-horizontal countercurrent stratified two-phase flow (근사수평 반류성층 2상유동에서의 계면전단응력 및 마찰계수)

  • 이상천;이원석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.116-122
    • /
    • 1988
  • Interfacial shear stresses have been determined for countercurrent stratified flow of air and water in a nearly-horizontal rectangular channel, based upon measurements of pressure drop, gas velocity profiles and mean film thickness. A dimensionless correlation for the interfacial friction factor has been developed as a function of the gas and liquid Reynolds numbers. Equivalent surface roughnesses for the interfacial friction factor have been calculated using the Nikuradse correlation and have been compared with the intensity of the wave height fluctuation on the interface. The results show that the interfacial shear stress is mainly affected by turbulent mixing near the interface due to the wave motion rather than by the roughened surface.

Determination of True Modulus of Elasticity and Modulus of Rigidity for Domestic Woods with Different Slenderness Ratios Using Nondestructive Tests (서로 다른 세장비에 대한 비파괴실험으로 국산재의 실질탄성계수와 전단탄성계수 결정)

  • Cha, Jae Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.36-42
    • /
    • 2015
  • This study examined true modulus of elasticity (MOE) and modulus of rigidity (G) for domestic woods with different slenderness ratios (L/D) using the static bending and stress wave tests. Bending properties of small clear wood specimen of three domestic wood species were determined at 12% moisture content. The results of this study indicated that both MOR and MOE of domestic woods were affected by the slenderness ratio. As the slenderness ratio increased, MOR and MOE increased. G and true MOE of domestic timber beams were obtained at different slenderness ratios by flexure test and stress wave test. The values reported here can be useful if these species woods are used for structural purposes. However, the reported values are only indicative and do not represent the true average of wood species due to the limited number of specimens tested.

A Study on the Fatigue Strength Reduction Factor under the High Cycle Bending Fatigue (고사이클 굽힘 피로에서의 피로강도 감소계수에 관한 연구)

  • Pyo, Dong-Keun
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 1992
  • 기구나 구조물의 피로수명은 노치에서의 피로균열 방생수명에 의하여 지배되기때문에 노치로 인한 피로강도감소계수 $K_f$는 피로설계상 대단히 중요한 인자이다. 노치 선단(Notch root)에서의 피로균열발생명수 N$_c$를 기준으로하면 탄성응력집중계수 $K_t$가 10 정도까지 $K_f$$K_t$간에는 거의 직선적인 관계가 있음이 이다- 고에 의하여 명석해졌으나 이는 인장,압축의 축력이 작용하였을 때이며 따라서 기구나 구조부재는 축력외에도 굽힘 피로 하중이 작용하였을때도 많으므로 본 연구에서는 굽힘 피로 하중을 받았을때도 있다. -고의 결론이 적용되는지는 검시코져 본 연구를 실시하였다.

  • PDF

Prediction of Tensile Properties for Short-fiber-reinforced Composites (단섬유 보강 복합재료의 기계적 특성 평가에 관한 연구)

  • Jeong, Tae-Heon;Lee, Dong-Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.53-59
    • /
    • 2000
  • 단섬유 보강 복합재료의 종횡비(aspect ratio)를 변화시키며 기계적 특성(탄성계수, 인장강도)을 평가하였다. 2차원 다중 파이버(multi-fiber) 모델을 이용하여 엇갈린(staggered) 배열과 규칙적(aligned) 배열에 대해 유한요소 해석을 하였다. 단섬유 복합재료의 유효탄성계수 및 인장강도는 섬유와 기지의 탄성계수비, 섬유 배열상태, 그리고 단섬유 종횡비의 함수로 표현되었으며, 해석결과의 탄성계수와 인장강도는 이론 모델의 결과와 사출 성형된 PEEK 복합재료 시험편의 결과와 비교하였다. 시험결과는 낮은 종횡비에서 이론 모델 결과와 일치함을 보였다. 단섬유 보강 복합재료의 배열 및 종횡비 변화에 따른 섬유보강 효과에 따른 계면응력 상태는 기계적 특성 결정에 중요한 영향을 보였다.

  • PDF

A Study on the Strength Analysis of Crankshaft for 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 크랭크축 강도해석에 관한 연구)

  • Lee, D.C.;Kang, D.S.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.359-368
    • /
    • 2006
  • The trend on marine diesel engine productions and refinements has led to a higher mean effective pressure and thermal efficiency. These resulted in increased maximum combustion pressure within the cylinder and vibratory torque in crankshaft. In view of this. the crankshaft should be able to withstand the dynamic stresses caused by load variations. Different factors including size, material and stress concentration factors should also be considered to ensure the reliability of the shafting system. As such, crankshaft must be designed and compacted within its fatigue strength. In this paper, the strength analysis of crankshaft Is carried out by: simplified method recommended by IACS(International Association Classification Societies) M53 and a detailed method with the crankshaft assumed as a continuous beam and bearing supported in its flexibility. The results of these two methods are then compared.

A Study on the Strength Analysis of Crankshaft for 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 크랭크축 강도해석에 관한 연구)

  • Lee, D.C.;Park, S.H.;Kang, D.S.;Kim, T.U.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.66-72
    • /
    • 2006
  • Marine diesel engine production and refinements sought a continuous increase on mean effective pressure and thermal efficiency. These results in increased maximum combustion pressure within the cylinder and vibratory torque in crankshaft. As such, crankshaft should be designed and compacted within its fatigue strength. In this paper, the 8H25/33P($3,155ps{\times}900rpm$) engine for ship propulsion was selected as a case study, and tile strength analysis of its crankshaft is carried out by. simplified method recommended by IACS M53 and a detailed method with the crankshaft assumed as a continuous beam and bearing supported in its flexibility. The results of these two methods are compared with each other.

  • PDF

Creep-Fatigue Life Design with Various Stress and Temperature Conditions on the Basis of Lethargy Coefficient (응력 및 온도 변화시 무기력계수를 이용한 크리프-피로 수명설계)

  • Park, Jung-Eun;Yang, Sung-Mo;Han, Jae-Hee;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.157-162
    • /
    • 2011
  • High temperature and stress are encounted in power plants and vehicle engines. Therefore, determination of the creep-fatigue life of a material is necessary prior to fabricating equipments. In this study, life design was determined on the basis of the lethargy coefficient for different temperatures, stress and rupture times. SP-Creep test data was compared with computed data. The SP-Creep test was performed to obtain the rupture time for X20CrMoV121 steel. The integration life equation was considered for three cases with various load, temperature and load-temperature. First, the lethargy coefficient was calculated by using the obtained rupture stress and the rupture time that were determined by carrying out the SP-Creep test. Next, life was predicted on the basis of the temperature condition. Finally, it was observed that life decreases considerably due to the coupling effect that results when fatigue and creep occur simultaneously.

Fatigue Crack shape Variations by a Residual Stress and Fatigue Life Predition (잔류응력에 의한 피로균열면 형상변화 및 수명예측)

  • 강용구;서창민;박원종
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.68-78
    • /
    • 1993
  • Fatigue crack shape variation by a residual stress during crack growth and life predition are studied. An analytical method is presented to predict the influence of a residual stress due to heattreatment on crack shape variations. Computer simulation results using this me thod are graphically shown that crack growth rate to surface direction are decreased due to compressive residual stress exisiting in surface area. These results are commpared with experimental results. The fatigue life is also predicted by computer simulation of crack aspect ratio variation which is based on the surface crack length increment per unit cycle calculated from a-N diagram. Predited life is about 12 percent lower than experimental life.

  • PDF

Reliability Estimation of Steam Turbine Blade Using First Order Reliability Method (FORM을 이용한 증기 터빈블레이드의 신뢰성 평가)

  • 황진호;김철수;김정규
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.199-204
    • /
    • 2002
  • 본 연구에서는 저압 증기 터빈블레이드의 안전성 확보를 위하여 작용응력 및 강도의 변동성을 고려한 확률론적 해석을 수행하였다. 정상상태에서 작용응력은 이론 및 유한요소해석에 의해서 얻을 수 있으며, 최대 von-Mises 응력은 215.4MPa이다. 회전굽힘 하중하에서의 피로한도는 응력비 R= -1에서 계단식 시험법을 이용하여 구하였으며, 이의 확률론적 특성에 가장 적합한 분포는 3 모수 와이블 분포이다. 그리고 신뢰성에 미치는 다양한 인자들의 영향은 영향계수(sensitivity factor)를 이용하여 정량적으로 평가하였다.

  • PDF