• Title/Summary/Keyword: 응력해석

Search Result 5,754, Processing Time 0.035 seconds

Preminary Study on Stress Analysis of Rock-mass Support Structure using Laboratory Test and Numerical Simulation (실내실험과 수치해석을 이용한 암반지보구조물의 응력거동 분석을 위한 기초 연구)

  • Lee, Jae-Ho;Moon, Hong-Deuk;Yoo, Ji-Hyeung;Kim, Hyuk;Son, Yeong-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.825-831
    • /
    • 2010
  • In this study is stress behavior of steel support structure is to identify basic research. Steel stress due to load step to determine the behavior of steel using strain gauge steel loading test was performed. Numerical analysis and steel loading test using strain gauge on the actual steel stress behavior was analyzed. First, when tensile loading 3.5tonf load side of the plastic behavior appeared. Elastic model, using numerical analysis and comparison of results, the actual value is saved and you can see some difference. This repeated loading tests on steel can be seen from the results of the stress behavior of the steel rather than the elastic behavior of elastic-plastic behavior is because you can see. In addition, the upper and lower steel stress in compression and tension behavior represents the behavior was similar, but different. Steel loading test results, Y-axis get a compression if X-axis is tension. The future based on this study, the stress sensitivity curve of magnetic anisotropy sensor for non-destructive stress measurement technique for the study will be performed. And the behavior of plastic zone and residual stress to determine the numerical analysis using non-elastic model is needed.

  • PDF

A Study on the Variation of Post Buckling Behaviour of 2-dimensional Shallow Arch Truss after Size Optimization (크기최적화 이후에 나타나는 2차원 얕은 아치 트러스의 후 좌굴 거동의 변화에 대한 연구)

  • Lee, Sang-Jin;Lee, In-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.107-112
    • /
    • 2008
  • This paper investigates the variation of post-buckling behaviours of 2-dimensional shallow arch type truss after sizing optimization. The mathematical programming technique is used to produce the optimum member size of 2D arch truss against a central point load. Total weight of structure is considered as the objective function to be minimized and the displacement occurred at loading point and member stresses of truss are used as the constraint functions. The finite difference method is used to calculate the design sensitivity of objective function with respect to design variables. The postbuckling analysis carried out by using the geometrically nonlinear finite element analysis code ISADO-GN. It is found to be that there is a huge change of post-buckling behaviour between the initial structure and optimum structure. Numerical results can be used as useful information for future research of large spatial structures.

  • PDF

Splice Length of GFRP Rebars Based on Flexural Tests of Unconfined RC Members (RC 부재 휨 실험에 의한 GFRP 보강근의 이음길이 제안)

  • Choi, Dong-Uk;Chun, Sung-Chul;Ha, Sang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • Glass fiber reinforced polymer (GFRP) bars are sometimes used when corrosion of conventional reinforcing steel bar is of concern. In this study, a total of 36 beams and one-way slabs reinforced using GFRP bars were tested in flexure. Four different GFRP bars of 13 mm diameter were used in the test program. In most test specimens, the GFRP bars were lap spliced at center. All beams and slabs were tested under 4-point loads so that the spliced region be subject to constant moment. Test variables were splice lengths, cover thicknesses, and bar spacings. No stirrups were used in the spliced region so that the tests result in conservative bond strengths. Average bond stresses that develop between GFRP bars and concrete were determined through nonlinear analysis of the cross-sections. An average bond stress prediction equation was derived utilizing two-variable linear regression. A splice length equation based on 5% fractile concept was then developed. As a result of this study, a rational equation with which design splice lengths of the GFRP bars can be determined, was proposed.

A Study on the Evaluating Shrinkage Cracking Properties of Concrete by Size of Specimen of Plat-Ring Restrained Test Method (판상-링형 구속시험방법의 시험체 치수에 따른 콘크리트 수축균열 특성 평가에 관한 연구)

  • Choi, Hyeong-Gil;Nam, Jeong-Soo;Na, Chul-Sung;Back, Yong-Kwan;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.581-584
    • /
    • 2008
  • In this study, it is willing to present that fundamental data for proposing quantitatively shrinkage cracking evaluation method such as plat-ring type restrained test method. To examine suitable size of specimen of plat-ring type restrained test method, Evaluated concrete about restrained shrinkage crack properties of numerical analysis of 3D solid element using the MIDAS program, drying shrinkage deformation, restrained shrinkage stress, crack area and crack point with inside ring diameter of specimen in 100mm, 150mm, 200mm and high of Specimen in 30mm, 50mm after curing in condition of constant temperature and usual habit of temperature 20${\pm}$3$^{\circ}$C, humidity 60${\pm}$5%. As a result, it was available about suitable estimation with inside ring diameter of specimen in more than 150mm and high of Specimen in 50mm. Hereafter, it is considered that the study concerning environmental condition and mixing factor in plat-ring type restrained test method is need.

  • PDF

Suggestion of Flexural Strengthening Ratio of NSM Strengthened Concrete Railroad Bridge based on Probability and Reliability (확률.신뢰도에 기초한 표면매립보강(NSM) 콘크리트 철도교의 휨보강비 산정)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Ki-Hong;Park, Ji-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.121-124
    • /
    • 2008
  • The purpose of this study is to evaluate the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate. The railroad bridge is usually under vibration and impact in service state. Therefore, it is important that the effective strengthening performance must be exhibited under the service loading is acted. To widely apply the NSM method for the concrete railroad bridge in field, it needs that reasonable strengthening parameter such as strengthening ratio has to be investigated and evaluated when the strengthening design is conducted. In this study, to suggest more reasonable strengthening ratio, material and geometrical uncertainty was considered and applied by Monte Carlo Simulation (MSC) technique. Lastly, the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate was evaluated by using the limit state function with the target reliability index.

  • PDF

Development of Designed Formula considering Buckling under Longitudinal and Transverse Axial Compressive Load (종횡방향 압축하중이 작용하는 유공판의 좌굴을 고려한 설계식 개발)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Jun-Kyo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.55-60
    • /
    • 2005
  • Plate that have cutout inner bottom and girder and floor etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight, piping etc.. Because cutout's existence gnaws in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic buckling strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step of ship. Therefore, and, reasonable elastic buckling strength about perforated plate need design ultimate strength. Calculated ultimated strength change several aspect ratioes and cutout's dimension, and thickness in this investigation. Used program applied ANSYS F.E.A code based on finite element method.

  • PDF

The Effect of Displacement Rate on Shear Characteristics of Geotextile-involved Ceosynthetic Interfaces (지오텍스타일이 포함된 토목섬유 경계면의 전단특성에 대한 변위속도 효과)

  • 김진만
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.173-180
    • /
    • 2003
  • In spite of its potential importance in the assessment of geosynthetic-related dynamic problems, no serious attempt has yet been made to investigate a probable dependence of dynamic friction resistance of the geosynthetic interface on shear displacement rate. Hence, an experimental study of geosynthetics was carried out on a shaking table, and the relationship between dynamic friction resistance and shear displacement rate of geosynthetic interfaces was investigated. A cyclic, displacement rate-controlled experimental setup was used. The subsequent multiple rate tests showed that interfaces that involve geotextiles have such unique shearing characteristics that shear strengths tend to increase with displacement rate. In contrast, once submerged with water, the shear strength appears to be no longer dependent on the displacement rate, partly due to lubrication effect of water trapped inside the interface. The results of the experimental study can be used in the seismic safety assessment of a landfill cover and slope where the geosynthetic materials are exposed to a relatively low normal stress.

Shear Behavior of RC Beams Using Alkali Activated Slag Concrete (알칼리 활성 슬래그 콘크리트를 사용한 RC 보의 전단거동)

  • Choi, Sung;Lee, Kwang-Myong;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.58-63
    • /
    • 2015
  • Several researches on cement zero concrete using alkali-activators have been conducted to investigate its fundamental material properties such as slump, strength and durability, however, research on the structural behavior of relevant members involving the elastic modulus, stress-strain relationship is essential for the application of this cement zero concrete to structural members. In this paper the shear behavior of reinforced concrete beams using 50 MPa-alkali activated slag concrete was experimentally evaluated. To achieve such a goal, six reinforced concrete beam specimens were fabricated and their shear behaviors were observed. The maximum difference between test results and analysis results in crack shear stress for beam specimens without stirrups is 31%, while that for beam specimens with stirrup is 15%. Furthermore, it is also found that the shear strength of alkali activated slag concrete is by 22~57% greater than the nominal shear strength calculated by design code, implying that shear design equations would provide conservative results on the safety side.

A study on the optimization of three-dimensional auxetic pyramid structure by using EDISON program (EDISON 프로그램을 사용한 3차원 팽창 피라미드 구조의 최적화 연구)

  • Kim, Gyu-Young;Kim, Soo-ho;Yun, Gi-Won;Kim, Hyun-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.807-815
    • /
    • 2017
  • Auxetic structures with negative Poisson's ratio can be used to achieve high mechanical properties in energy absorption and destruction toughness. In this paper, we aim to design an auxetic structure which has a high negative Poisson's ratio and a stiffness over 50N/mm by using an optimization method. Length(L), thickness(t) and angle(${\theta}_1$, ${\theta}_2$) of an auxetic pyramid are the design parameters, and also stress, Poisson's ratio and stiffness are thr reaction factors. We used Box-Behnken method and conducted 4 factors - 3 levels experiment design. Finite element models are analyzed by using Edison program CSD_EPLAST.

A Study on the Consolidation Settlement Due to the Vertical Drain Method by the Implicit Finite Difference Scheme (음적차분해석법을 이용한 연직배수 공법에 의한 압밀침하에 관한 연구)

  • Park, Sung Zae;Jung, Du Hwoe;Jeong, Gyeong Hwan;Lee, Kyeong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1243-1251
    • /
    • 1994
  • The implicit finite difference program was developed to evaluate the relationship between time and consolidation ratio within the zone of vertical drain effective radius. In the evaluation, the excess pore water pressure was considered to dissipate in two directions, namely, vertical and radial flow direction. To calculate subsoil stress increments in the soil due to multi-step embanking, the foundation soil was assumed to be an isotropic and homogeneous elastic medium and the initial excess pore water pressure was estimated by using Skempton's parameters whose condition is plane strain and elastic phase of pore pressure response within the soft ground. Regarding to the settlement estimation, immediate and primary consolidation settlements were calculated. The secondary or delayed consolidation settlement was not considered. Numerically calculated excess pore water pressure and settlements were similar to the measured data in situ. Thus, this method can be used to predict the time-consolidation ratio of each layer treated by vertical drain method.

  • PDF