• Title/Summary/Keyword: 응력특이성계수

Search Result 45, Processing Time 0.023 seconds

A Smooth Elasto-Plastic Cap Model(I): Rate Formulation, Yield Surface Determination (연속 탄소성 캡 모델(I): 구성모델 및 항복면의 결정)

  • 서영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.15-23
    • /
    • 2001
  • 탄소성 캡 모델의 중요한 장점은 여러 가지 다공체의 전체적인 축차 및 체적의 비선형 상호거동을 동시에 다룰 수 있음에 있다. 그러나 대부분의 캡 모델이 가진 문제점중의 하나는 세 개의 독립적인 항복면이 불연속으로 연결되어 있음으로부터 기인된다. 본 연구에서는 이러한 항복면 사이의 연결점에서의 탄소성 접선 계수는 특이점이 되고 수치해석상 잠재적인 어려움을 내재하고 있음을 나타내고 이러한 문제의 해결방안의 하나로 세 개의 항복면이 연속적으로 만나는 새로운 탄소성 캡 모델을 제시하였다. 본 논문에서는 모델의 증분형태의 구성식 및 새로운 응력을 구하기 위한 활동 항복면의 결정을 판단하는 알고리즘이 제시되었다. 동반 논문에서는 내재적인 응력적분 및 일관적인 접선계수를 유도하였고 예제계산들을 수행하였다.

  • PDF

Prediction of Crack Propagation Path Using Boundary Element Method in IC Packages (반도체 패키지의 경계요소법에 의한 균열진전경로의 예측)

  • Chung, Nam-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • Applications of bonded dissimilar materials such as integrated circuit(IC) packages, ceramics/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edge in bonded joints of dissimilar materials. In order to investigate the IC package crack propagating from the edge of die pad and resin, the fracture parameters of bonded dissimilar materials and material properties are obtained. In this paper, the thermal stress and its singularity index for the IC package were analyzed using 2-dimensional elastic boundary element method(BEM). From these results, crack propagation direction and path by thermal stress in the IC package were numerically simulated with boundary element method.

On Computation of the Stress Intensity Factors in the V-Notched Plates using a contour integral method (경로적분법 을 이용한 V-노치 평판 의 응력확대계수 계산)

  • 김진우;김선덕;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.232-240
    • /
    • 1984
  • The plane elastostatic boundary value problem with the sharp V-notched singularity is formulated by a contour integral method for determining numerically the stress intensity factors. The integral formula is based on Somigliana type of reciprocal work in terms of displacement and traction vectors on the plate boundary. The characteristic singular solutions can be identified on the basis of traction free boundary conditions of two radial notch edges. Two numerical example examples are treated in detail; a symmetric mode-I type of notched plate with various interior angles and a mixed mode type of cantilever subjected to end shear.

Analysis of cracks emanating from a circular hole in an orthotropic infinite plate (直交 異方性 無限平版 內部의 圓孔周圍 龜裂 解析)

  • 정성균;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.895-903
    • /
    • 1987
  • This paper investigates the problem of cracks emanating from a circular hole in an orthotropic infinite plate. The mixed-mode stress intensity factors are obtained by using the modified mapping-collocation method. To investigate the effect of anisotropy and circular hole boundary on crack tip singularity, stress intensity factors are considered as functions of the normalized crack length for various types of laminated composite. The results indicate a strong dependence of the stress intensity factor on the material anisotropy and geometry.

Volume Integral Expressions for Numerical Computation of the Dynamic Energy Release Rate (동적(動的)에너지 방출율(放出率)의 수치해석(數値解析)을 위한 체적적분식(體積積分式))

  • Koh, Hyun Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.65-73
    • /
    • 1989
  • Continuum formulations for the expressions of dynamic energy release rates and computational methods for dynamic stress intensity factors are developed for the analysis of dynamic fracture problems subjected to stress wave loading. Explicit volume integral expressions for instantaneous dynamic energy release rates are derived by modeling virtual crack extensions with the dynamic Eulerian-Lagrangian kinematic description. In the finite element applications a finite region around a crack-tip is modeled by using quarter-point singular isoparametric elements, and the volume integrals are evaluated for each crack-tip element during virtual crack extensions while the singularity is maintained. It is shown that the use of the present method is more reliable and accurate for the dynamic fracture analysis than that of other path-independent integral methods when the effects of stress waves are significant.

  • PDF

A Study on the Determination of Stress Intensity Factors in Orthotropic Plane Elastic Bodies (직교이방성 평면탄성체의 응력확대계수 결정에 관한 연구)

  • Jin, Chi Sub;Lee, Hong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.19-27
    • /
    • 1993
  • Recent work in the mechanics of fracture points out the desirability of a knowledge of the elastic energy release rate, the crack extension force, and the character of the stress field surrounding a crack tip in analyzing the strength of cracked bodies. The objective of this work is to provide a discussion of the energy rates, stress fields and the like of various cases for anisotropic elastic bodies which might be of interest. Reinforced concrete, wood, laminates, and some special types of elastic bodies with controlled grain orientation are often orthotropic. In this paper, determination of the stress intensity factors(SIFs) of orthotropic plane elastic body using crack tip singular element and fine mesh in near the crack tip is performed. A numerical method in this paper was used by displacement correlation method. A numerical example problem of an orthotropic cantilevered single edge cracked elastic body subjected to shear loading was analyzed, and the results of this paper are in good agreement with those of the others.

  • PDF

Evaluation Method of Interface Strength in Bonded Dissimilar Materials of AU/Epxy (Al/ Epoxy 이종 접합체에 대한 계면강도의 평가방법)

  • Chung, Nam-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2277-2286
    • /
    • 2002
  • The application of bonded dissimilar materials to industries as automobiles, aircraft, rolling stocks, electronic devices and engineering structures is increasing gradually because these materials, compared to the homogeneous materials, have many advantages for material properties. In spite of such wide applications of bonded dissimilar materials, the evaluation method of quantitative strength considering the stress singularities for its bonded interface has not been established clearly. In this paper, the stress singularity for Bctors and the stress intensity factors were analyzed by boundary element method(BEM) for the scarf joints of Al/Epoxy with and without a crack, respectively. From static fracture experiments of the bonded scarf joints, a fracture criterion and a evaluation method of interface strength in bonded dissimilar materials were proposed and discussed.

Strength Evaluation of Friction Welded SUH35/SUB3 Considering Stress Singularity (응력특이성을 고려한 SUH35/SUH3 마찰용접재의 강도평가)

  • Chung, Nam-Yong;Park, Chul-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.59-67
    • /
    • 2006
  • Recently, application of friction welded SUH35/SUH3 is increasing in the manufacturing process of automotive engine valves For securing its reliability and a reasonable strength evaluation method, it is necessary to assess stress singularity under the residual stress condition on the friction welded interface between dissimilar materials. In this paper, strength evaluation method of friction welded materials was investigated by boundary element method and static tensile testing. An advanced method of quantitative strength evaluation for SUH35/SUH3 friction welded material is to be suggested by establishing fracture criterion by using stress singularity factors.

HIGHER ORDER SINGULARITIES AND THEIR ENERGETICS IN ELASTIC-PLASTIC FRACTURE (탄소성 균열 문제에서 고차응력특이성과 에너지론)

  • Jun, In-Su;Lee, Yong-Woo;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.384-388
    • /
    • 2001
  • The higher order singularities[1] are systematically examined, and discussed are their complementarity relation with the nonsingular eigenfunctions and their relations to the configurational forces like J-integral and M-integral. By use of the so-called two state conservation laws(Im and Kim[2]) or interaction energy, originally proposed by Eshelby[3] and later treated by Chen and Shield[4], the intensities of the higher order singularities are calculated, and their roles in elasticplastic fracture are investigated. Numerical examples are presented for illustration.

  • PDF

Establishment of Fracture Criterion on Friction Welded Dissimilar Materials (이종 마찰용접재의 파괴기준 설정)

  • Chung, Nam-Yong;Park, Cheol-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.164-171
    • /
    • 2006
  • Application of friction welding is increasing in the manufacturing process of machine elements in many industry fields. To establish a reasonable strength evaluation method and fracture criterion, it is necessary to analyze stress singularity under the residual stress condition on friction welded interface between dissimilar materials. In this paper, a method to establish fracture criterion on interface of friction welded dissimiliar materials was investigated by using the boundary element method BEM and static tensile testing. A quantitative fracture criterion for friction welded dissimilar materials is suggested by using stress singularity factor, $\Gamma$.