• Title/Summary/Keyword: 응력오차크기

Search Result 36, Processing Time 0.023 seconds

Adaptive Analysis and Error Estimation in Meshless Method (무요소 방법에서의 적응적 해석을 위한 오차의 평가)

  • 정흥진
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.261-274
    • /
    • 1998
  • In this paper, local and global error estimates for the element-free Galerkin (EFG) method are proposed. The essence of proposed error estimates is to use the difference between the values of the projected stress and these given directly by the EFG solution. The stress projection can be obtained simply by taking product of shape function based on a different domain of influence with the stresses at nodes. In this study, it was found that the effectivity index is optimized if the domain of influence in stress projection procedure is the smallest that retains regularity of the matrices in EFG. Numerical tests are shown for various 1D and 2D examples illustrating the good effectiveness of the proposed error estimator in the global energy norm and in the local error estimates.

  • PDF

Analysis of Stress Distribution in the Hoop Test using Finite Element Method (유한요소법을 이용한 Hoop Test에서의 응력분포 해석)

  • 박형동
    • Tunnel and Underground Space
    • /
    • v.5 no.3
    • /
    • pp.230-239
    • /
    • 1995
  • 암석의 인장강도 실험법의 하나로써 새롭게 개발된 Hoop Test에 대한 이론적 뒷받침을 하고자 유한요소법을 사용하여 응력분포를 해석하였다. 간단하며 사용하기 편리한 실험장치이지만 시료가공시 생길 수 있는 내부공의 지름에 대한 오차, 재부공벽면과 하중장치외벽과의 마찰 등이 있어 이들로부터 발생할 오차를 평가해 보았다. 또한 시료의 안지름과 바깥지름의 비율이 응력의 크기에 끼치는 영향을 조사하였다. 응력해석결과, 일반적인 시료준바에 필요한 주의만 기울이면 실험치에 별다른 영향을 주지않는 것으로 제안되었고 이는 그동안의 실험결과의 신뢰성을 이론적으로 보충해 주었다.

  • PDF

Numerical Simulation of Tensile Strength Test by Ring-type Specimen (링 시험편에 의한 인장강도시험의 수치해석)

  • 진연호;양형식;박철환
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.63-66
    • /
    • 2000
  • Stress variation due to size variation and the eccentricity of ring type tensile specimen was analyzed by FLAC program. To get the stable tensile strength the ratio of inner to outer ring diameter should be within a certain range. Diameter ratio of 0.3 was suggested to be adequate. It seemed to be difficult to determine the tensile strength because of stress distortion if eccentricity exceeded home limit. To limit the error in 10%, lateral and axial eccentricity was analyzed to be in the limits of 3% and 10%, respectively.

  • PDF

Numerical Simulation of Tensile Strength Test by Ring-type Specimen (링 시험편에 의한 인장강도시험의 수치해석)

  • 진연호;양형식;박철환
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.316-319
    • /
    • 2000
  • Stress variation due to size variation and the eccentricity of ring type tensile specimen was analyzed by FLAC program. To get the stable tensile strength the ratio of inner to outer ring diameter should be within a certain range. Diameter ratio of 0.3 was suggested to be adequate. It seemed to be difficult to determine the tensile strength because of stress distortion if eccentricity exceeded some limit. To limit the error in 10%, lateral and axial eccentricity was analyzed to be in the limits of 3% and 10%, respectively.

  • PDF

An Expert Finite Element Discretization for Time-Dependent Structural Problems (시간 종속 구조응력해석을 위한 전문가 유한요소 모델링)

  • 주관정
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.125-131
    • /
    • 1990
  • A finite element technique for the time dependent large structural problems is presented. It is based on the error estimation for the bases of solution spaces. An a-posteriori energy norm of residual error serves as the error indicator. Mode shapes which are calculated by scaling the Ritz vectors are applied to discretize the continuous spatial domain. Finally, the performance of the proposed methods is demonstrated by solving simple examples.

  • PDF

Analysis of Hydraulic Lift Force of a Fuel Assembly (핵연료 집합체에 대한 수력적 양력의 해석)

  • Sim, Yoon-Sub;Oh, Dong-Seok;Hong, Soung-Dug;Kwon, Hyuk-Sung
    • Nuclear Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.95-100
    • /
    • 1990
  • The exact expression for the 1151 force on a fuel assembly in a reactor core is derived in terms of calculable hydraulic parameters. The relation for the lift force. pressure drop, buoyancy force, viscous force. and fuel assembly weight is discussed. Based on the derived exact expression. error analysis is made for a simple expression applying COBRA IV-i to a typical PWR fuel assembly. The error analysis revealed that the error of the simple expression consists of four terms and the overall error depends on the flow rate change direction, and its magnitude is about 1%.

  • PDF

A Study of a Variety of Sands in Stress-dilatancy Relationships (각 종 모래의 Stress-dilatancy 관계에 관한 연구)

  • 박춘식;장정욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.41-48
    • /
    • 2002
  • Anisotropy of stiffness, from extremely small strains to post-failure strains, of isotropically consolidated air-pluviated sands in plane strain compression was studied by using the newly developed instrumentation fur small strain measurements, Seven types of sand of world-wide origins were tested, which have been extensively used for research purposes. Stress-strain relationships for a wide range of strain from about 0.0001% to the peak were obtained by measuring axial and lateral strains locally free from the effects of bedding and membrane penetration errors at the specimen boundaries. The result showed that the relationship between the principal stress ratio and the principal strain increment ratio was constant, being rarely affected by the over-consolidation ratio and the confining pressure. Although in the small strain the anisotropy hardly affected the relationship between the principal stress ratio and the principal strain increment ratio, the K value around the peak varied according to the $\delta$ value. In general, Rowe\`s stress-dilatancy equation works fairly well from the small strain to the peak.

The Effects of Screw Retained Prosthesis Misfit & Cantilever on Stress Distribution in Bone Around the Implant (나사유지형 임플란트 고정성 보철물의 적합도와 캔틸레버가 지지골조직의 응력분산에 미치는 영향)

  • Lee, Jae-In;Kim, Tae-Young;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.224-235
    • /
    • 2013
  • A passively fitting prosthesis is an essential prerequisite to attain long-lasting success and maintenance of osseointegration. However, true "passive fit" can not be achieved with the present implant-supported prosthesis fabrication protocol. Many clinical situations are suitably treated with cantilevered implant-supported fixed restorations. The purpose of this study was to compare the stress distribution pattern and magnitude in supporting tissues around ITI implants with cantilevered, implant-supported, screw-retained fixed prosthesis according to the fitness of superstructures. Photoelastic model was made with PL-2 resin (Measurements, Raleigh, USA) and three ITI implants (${\phi}4.1{\times}10mm$) were placed in the mandibular posterior edentulous area distal to the canine. Anterior and posterior extended 4-unit cantilevered FPDs were made with different misfit in the superstructures. 4 types of prosthesis were made by placing a $100{\mu}m$ gap between the abutment and the crown on the second premolar and/or the first molar. Photoelastic stress analysis were carried out to measure the fringe order around the implant supporting structure under simulated loading conditions (30 lb).

A Study on the Analysis Parameter Used in Improved EFG Crack Analysis Technique Based on Error Estimate (오차분석을 통한 개선된 EFG 균열해석기법의 해석계수 영향평가)

  • 이상호;윤영철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.703-713
    • /
    • 2002
  • Recently, an improved EFG(Element-Free Galerkin) crack analysis technique, which includes a discontinuous approximation and a singular basis function on the auxiliary supports, was developed. The technique is able to accurately analyze the crack propagation problem without any modification of the analysis model; however, it shows some dependency on the analysis parameters used. In this study, the effect of analysis parameters such as the size of compact support, dilation parameter, the smoothness of shape function around the crack tip, and the number of node using auxiliary supports on the accuracy of solution has been investigated. Through a patch test with a crack, relative L₂ error norm of stresses and the stress intensity factor were computed and compared for various analysis parameters and the results were presented as guidelines for adequate choice of analysis parameters.

Adaptive Analysis Methods for the Accuracy Control of Finite Element Solutions (유한요소해의 정확도 조절을 위한 적응해석법)

  • Oh, H.S;Lee, D.I;Choi, J.H;Lim, J.K
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2067-2077
    • /
    • 1996
  • In adaptive finite element analysis, r- and h-methods are generally used on the basis of a discretization error estimator. In this paper, an rh-method is proposed as a new adaptive method which can improve the adaptivity performance by using both of them. This suggested rh-method moves nodal coordinates of initially given model to adjust element discretization errors and thereafter performes the h-method tdo obtain the specified accuracy of finite element solutions. Numerical experiments for various plane problems were performed using 4-noded isoparametric quadrilateral elements. As a result, the rh-method has been shown to be an accurate and efficient adaptive analysis method to obtain as improved solution.