• Title/Summary/Keyword: 응력분포계수

Search Result 294, Processing Time 0.027 seconds

Study on the Consolidation Characteristics of Marine Clay by CRS and Conventional Tests (일정변헝률 및 표준압밀시험을 이용한 해성점토의 압밀특성 연구)

  • Lee, U-Jin;Im, Hyeong-Deok;Lee, Won-Je
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 1998
  • A series of conventional tests and CRS consolidation tests with different rates of strain were performed to investigate the consolidation characteristics of marine clay. Preconsolidation pressures were evaluated by applying previously proposed methods for both the conventional tests and CRS tests results in order to check the legitimacy of those methods. The effects of strain rate on effective consolidation stress strain relationship, porewater pressure, and preconsolidation pressure were also discussed It was found that the effective stress strain relationship and the preconsolidation pressure are a function of strain rate imposed during consolidation test, but compression index isn't. The preconsolidation pressure ratio ($a_2=\sigma'_{pCRS}/\sigma'_{pConv}$)of marine clay appears proportional to the logarithm of strain rate, with average values ranging from 1.11 to 1.30 for strain rates between $1\timesx10^{-4} %/sec\; and\; 4\times10 %/sec$. The porewater pressure ratio during CRS teats does not exceed 6.0% except when the strain rate is $6.67\times10^{-4} %/sec$. Coefficient of consolidation or coefficient of permeability at normally consolidated range was not affected by the type of consolidation tests and the strain rate. Typical values of compression index (C.), coefficient of consolidation(c.), and coefficient of permeability (k.) at normally consolidated range were 0.56-0.95, $0.56\times10^{-4}~3.0\times10^{-4}cm2/sec,\; and\; 2.0\times10^{-8}~7.0\time10^{-4}cm/sec,$ respectively.

  • PDF

ZAn Experimental Study on Performance Evaluation of Simplified Composite Steel I-Beam Bridge (초간편 강합성 H형강 교량의 실험 성능평가 고찰)

  • Kim, Jae-Heung;Park, Jong-Sup;Lee, Son-Ho;Choi, Seung-Ho;Lee, Young-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.29-32
    • /
    • 2009
  • 본 연구는 도로교 설계 기준 바탕으로 H-형강을 사용하여 20~30m 사이의 지간장을 가진 중 소규모 교량에 적용이 가능한 초간편 교량의 모형실험 결과와 유한요소해석프로그램(ABAQUS)을 사용한 해석 결과와 비교 분석하여 초간편 교량의 성능을 평가한 것이다. 일반적으로 우리나라의 교량들은 시공과정에서 여러 단계를 거쳐 시공한다. 시공단계가 복잡할수록 공사기간은 늘어나기 때문에 기상 현상에 의한 파괴와 교량의 낙후로 인해 유지, 보수, 교체 또는 교량확장을 해야 하는 경우 교통 혼잡과 경제적 손실을 줄 수 있다. 따라서 본 연구는 이와 같은 경제적 손실을 줄일 수 있는 초간편 H형강 교량의 연구의 일환으로 기존의 연구 결과를 모형실험 수행 결과와 비교하여 최적성능을 평가하기 위해 실시하였다. 사용된 실험체는 실험장소인 건설기술연구소의 구조실험동 장소 여건에 따라 10m 안팎의 경간을 갖는 교량으로 제작하였다. 실험체의 설계 제작 과정에 대해 검토한 후 범용구조해석 프로그램을 이용하여 동일한 조건을 적용한 결과를 비교 후 최종적으로 초간편 교량의 성능에 대한 평가를 실시하여 김재흥 등(2009)의 의해 제안된 하중분배계수 값이 적용가능한지 판단하였고, 실험을 통해 응력 분포와 극한하중에 대해 검토하였다.

  • PDF

A Stochastic Analysis of Variation in Fatigue Crack Growth of 7075-T6 Al alloy (7075-T6 A1 합금의 피로균열진전의 변동성에 대한 확률론적 해석)

  • Kim, Jung-Kyu;Shim, Dong-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2159-2166
    • /
    • 1996
  • The stochastic properties of variation in fatigue crack growth are important in reliability and stability of structures. In this study,the stochastic model for the variation of fatigue crack growth rate was proposed in consideration of nonhomogeneity of materials. For this model, experiments were ocnducted on 7075-T6 aluminum alloy under the constant stress intensity factor range. The variation of fatigue crack growth rate was expressed by random variables Z and r based on the variation of material coefficients C and m in the paris-Erodogan's equation. The distribution of fatigue life with respect to the stress intensity factor range was evaluated by the stochastic Markov chain model based on the Paris-Erdogan's equation. The merit of proposed model is that only a small number of test are required to determine this this function, and fatigue crack growth life is easily predicted at the given stress intensity factor range.

Compressive Behavior for Smart Skin of Sandwich Structure (스마트 스킨 샌드위치 시편의 압축거동 연구)

  • Kim, Young-Sung;Kim, Yong-Bum;Park, Hoon-Cheol;Yoon, Kwang-Joon;Lee, Jeo-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.56-64
    • /
    • 2002
  • In this work, a smart skin of multi-layer structure is designed and manufactured. Through the compression test, the characteristic of smart skin behavior was examined. We have predicted stress of each layer and the first failed layer of the smart skin structure by using MSC/NASTRAN. The finite element model was verified by comparing measured data from the compression test and result from the geometrically linear/non-linear analysis. The finite element model was used for obtaining design data from the parametric study. It was confirmed that shear moduli of honeycomb core affect the buckling load of smart skin where shear deformation was considerable.

Appoximate Analysis of Rigid Frames under Vertical and Lateral Loads (강접골조의 수직 및 수평하중에 대한 근사해석)

  • Choi, Chul Wung;Kim, Young Chan;Kang, Kyung Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.115-122
    • /
    • 2001
  • Even in today's computer-oriented world with all its sophisticated analysis tools, engineering judgement is required to assess the adequacy of computer output. Approximate analysis method can be a feasible tool to check solutions from computer softwares roughly. It can be a simple tool for structural engineer to check force distribution in frame. Also, it can serve as a basis in selecting preliminary member sizes. The objective of this study is length factor and inflection points. The validity of this method is examined by comparing the results of this method with those of existing methods, showing improvement in the prediction of structural behavior.

  • PDF

Prediction of Thermoelastic Constants of Unidirectional Porous Composites Using an Unmixing-Mixing Scheme (분리-혼합 기법을 이용한 일방향 다공성 복합재료의 열탄성 계수 예측)

  • Shin, Eui-Sup
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.34-39
    • /
    • 2012
  • A thermo-poro-elastic constitutive model of unidirectionally fiber-reinforced composite materials is suggested by extending the unmixing-mixing scheme which is based upon composite micromechanics. The strain components of thermal expansion due to a temperature change, gas pressure in pores, and chemical shrinkage are included in the constitutive model. On purpose to verify the derived constitutive relations, the representative volume element of two-dimensional lamina subject to various loading conditions is analyzed by the finite element method. The overall stress and strain responses are obtained, and compared with the predicted values by the unmixing-mixing scheme. The numerical results show the usefulness of the proposed model to predict the thermoelastic behavior of porous composites.

Measurement of three-dimensional interfacial wave structures in nearly- horizontal countercurrent statified two-phase flow (근사수평 반류성층 2상유동에서의 3차원 계면파의 구조측정)

  • 이상천
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.599-606
    • /
    • 1988
  • Structures of interfacial waves in nearly-horizontal countercurrent stratified air-water flow have been measured by means of a needle contact method. Based upon a statistical analysis for the liquid film distribution, statistical properties of the waves such as mean film thickness, mean wave amplitude and rms value of the wave fluctuation have been calculated. The results show that the film distribution can be described by a Gaussian probability density function for the three-dimensional wave regime. It is also indicated that the mean film thick ness and the rms value of the wave fluctuation increase as gas and liquid flow rates are increased in countercurrent two-phase flow. The dimensionless intensity of the wave fluctuation may be regarded as a function of the Froude number and the dimensionless mean film thickness.

Three-Dimensional Flow Response Analysis of Subsea Riser Transporting Deep Ocean Water (심층수 취수용 해저 라이저의 3차원 흐름 응답해석)

  • Hwang, Hajung;Woo, Jinho;Na, Won-Bae;Kim, Hyeon-Ju
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.2
    • /
    • pp.113-117
    • /
    • 2015
  • This study presents a 3-dimensional flow-structure interaction analysis of subsea risers in water flows. Two structural connectors (flat and circular couplers) were intentionally devised and numerically tested using ANSYS CFX to investigate how these couplers behave under the water flows. In the flow analysis, the water field was constructed with an inlet, outlet, and symmetric boundary conditions. As a result, the responses (drag coefficients and pressure fields) were obtained and the pressure fields were applied for the structural analysis. Finally, the structural responses (displacements and equivalent stresses) of the risers were measured to demonstrate the efficiency of the riser connectors.

A Study on the Engineering Characteristics of Granitic Rock Masses in Geoje Island (거제지역 화강암체의 지질공학적 특성)

  • 조태진;김혁진
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.139-153
    • /
    • 1995
  • Engineering characteristics of granitic rock masses in Geoje island were estimated by investigating the mechanical and hydraulic properties of core samples drilled in - situ. Since the effect of in -situ stresses could not be considered, some of the engineering properties estimated through rock mass classification were quite different from the in - situ tested results. Based on the results of rock mass classification, borehole tests, and laboratory test the empirical parameters for the design of underground structure were assessed. Though some number of fractured zones were found, granitic rock mass in the southern part of Geoje island showed fairly good quality and the excavating conditions were expected to be suitable for the construction of large scale underground facilities.

  • PDF

Calculation of Poroelastic Parameters of Porous Composites by Using Micromechanical Finite Element Models (미시역학적 유한요소 모델을 이용한 다공성 복합재료의 기공 탄성 인자 산출)

  • Kim, Sung-Jun;Han, Su-Yeon;Shin, Eui-Sup
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • In order to predict the thermoelastic behavior of porous composites, poroelastic parameters are measured by using micromechanics-based finite element models. The expanding deformation caused by pore pressure, and the degradation of homogenized elastic moduli with pores are calculated for the assessment of the poroelastic parameters. Various representative volume elements considering the shape, size, and array pattern of pores are modeled and analyzed by a finite element method. The effects of porosity and material anisotropy, and the distribution of stain energy density are investigated carefully. In addition, the measured poroelastic parameters are verified by predicting the thermo-pore-elastic behavior of carbon/phenolic composites.