• Title/Summary/Keyword: 응답가속도

Search Result 448, Processing Time 0.026 seconds

Analysis of Reservoir Seismic Response Acceleration Amplification Characteristics Using Seismic Measurements Data (지진계측 기록을 이용한 저수지 지진응답가속도 증폭 특성 분석)

  • Lee, Moojae;Kim, Yongseong;Tamang, Bibek;Lee, Seungjoo;Lee, Gilyong;Heo, Joon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.51-63
    • /
    • 2020
  • In this study, the model test of a reservoir was performed through a dynamic analysis method by using the data obtained from seismometers. Besides, we analyzed the behavior of the seismic acceleration amplification by reservoir height. To test the model, the data measured by the seismometers were applied at the foundation of the reservoir as input data, and the results from the analysis were compared with the data measured at the dam crest. The analysis results manifest that the peak values and the trend of the seismic wave obtained from the numerical analysis are in good agreement with the measured data. Also, the acceleration amplification ratio was proportional to the reservoir height and the magnitude of the earthquake. Through this study, the dynamic analysis method, which is based on the cyclic elastoplastic constitutive equation, can be considered as an appropriate technique to analyse the seismic behavior by the application of the data obtained from the seismometers installed in the reservoir. Also, the applicability of the seismometers can be enhanced through this technique in the future.

Earthquake Amplification for Various Multi-Layer Ground Models (다양한 다층 지반모형에 대한 지진동 증폭)

  • Sugeun Jeong;Hoyeon Kim;Daeheyon Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.293-305
    • /
    • 2023
  • Three ground models are analyzed using a 1g shaking table and laminar shear box (LSB) to investigate the impact of the ground structure on seismic wave amplification during earthquakes. Multi-layer horizontal, embankment, and basin ground models are selected for this investigation, with each model being divided into dense and loose ground layers, Accelerometers are installed during the construction of each ground model to capture any seismic wave amplification owing th the propagation of an artificial seismic wave, sine wave sweep, and 10-Hz sine wave through a given ground model. The amplification of the tested seismic waves is analyzed using the observed peak ground acceleration and spectrum acceleration. The observed acceleration amplification in the multi-layer horizontal ground model is significantly higher the seismic waves that propagated across the dense ground-loose ground boundary compared with those that only propagated through the dense ground. Furthermore, the observed acceleration amplification gradually increases in the central part of the multi-layer embankment and basin models for the seismic waves that propagated across the dense ground-loose ground boundary.

Estimation of Displacement Responses Using the Wavelet Decomposition Signal (웨이블릿 분해신호를 이용한 변위응답의 추정)

  • Jung, Beom-Seok;Kim, Nam-Sik;Kook, Seung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.347-354
    • /
    • 2006
  • In this paper we have attempted to bring the wavelet transform theory to the dynamic response conversion algorithm. This algorithm is proposed for the problem of estimating the displacement data by defining the transformed responses. In this algerian, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The advantage of the wavelet transform over either a pure spectral or temporal decomposition of the signal is that the pertinent signals features can be characterized in the time-frequency plane. In the response conversion procedure using the wavelet decomposition signals, not only the static component can be extracted, but also the dynamic displacement component can be separated by the structural mode from the identified displacement response. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.

Estimation of Wind-induced Responses of a Tall Building Structure for Designing Active Controller (능동제어기 설계를 위한 고층 건물의 풍응답 추정)

  • Park, Hyun-Heum;Mun, Dae-Ho;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.159-167
    • /
    • 2017
  • The purpose of this study is to accurately estimate the wind-induced responses of a tall building structure for using the estimated responses in the process of calculating the optimal force of an active control device. Kalman filter was used for the estimation process and a 3-storied model structure on a shaking table was tested for the verification of the estimation accuracy. The system matrices of the model were constructed based on the mode parameters obtained by the system identification. The estimated displacement matched up well with the measured one. Finally, the wind-induced responses of a real 39-storied building structure excited by the typhoon MUIFA were estimated.

Analysis of Response Characteristics According to Permanent Displacement in Seismic Slope (지진시 비탈면의 영구변위 발생에 따른 응답특성 분석)

  • Ahn, Jae-Kwang;Park, Sangki;Kim, Wooseok;Son, Su-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.135-145
    • /
    • 2019
  • The slope collapse can be classified into internal and external factors. Internal factors are engineering factors inherent in the formation of slopes such as soil depth, slope angle, shear strength of soil, and external factors are external loading such as earthquakes. The external factor for earthquake can be expressed by various values such as peak ground acceleration (PGA), peak ground velocity (PGV), Arias coefficient (I), natural period (Tp), and spectral acceleration (SaT=1.0). Specially, PGA is the most typical value that defines the magnitude of the ground motion of an earthquake. However, it is not enough to consider the displacement in the slope which depends on the duration of the earthquake even if the vibration has the same peak ground acceleration. In this study, numerical analysis of two-dimensional plane strain conditions was performed on engineered block, and slope responses due to seismic motion of scaling PGA to 0.2 g various event scenarios was analyzed. As a result, the response of slope is different depending on the presence or absence of sliding block; it is shown that slope response depend on the seismic wave triggering sliding block than the input motion factors.

Free Vibration and Forced Sinusoidal Vibration Analysis for Satellite Antenna Structures (위성 안테나 구조물의 자유진동 및 정현파 강제 진동 해석)

  • Shin, Won-Ho;Oh, Il-Kwon;Han, Jae-Hung;Oh, Se-Hee;Lee, In;Kim, Chun-Gon;Park, Jong-Heung
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.20-25
    • /
    • 2001
  • This paper deals with finite element analysis for free vibration and forced sinusoidal vibration of Ka- and Ku- band antenna structures using MSC/NASTRAN. The structures are designed to satisfy minimum resonance frequency requirement in order to decouple the dynamic interaction of the satellite antenna with the spacecraft bus structure. The large mass method was utilized to analyze output acceleration according to the forced sinusoidal vibration inputs in X-, Y- and Z- directions. The analysis results can also be used thor verification experimental planning of satellite antenna.

  • PDF

Generation of Artificial Acceleration-Time Histories for the Dynamic Analysis of Structures in the Korean Peninsula (구조물(構造物)의 동적해석(動的解析)을 위한 한반도(韓半島)의 인공지진파(人工地震波) 작성(作成))

  • Kim, Won Bae;Yu, Chul Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.39-47
    • /
    • 1990
  • The generation of artificial accelerograms considering the characteristic of earthquakes in the Korean peninsula for a time history analysis of structures is accomplised by the stochastic method. The engineering data such as a representative shape of envelope function and an effective duration are investigated from the instrumental records. The maximum ground acceleration value is based on seismic zoning map which are constructed for the Korean peninsula. The acceleration-time histories are generated for two different types of earthquake motions and two types of soil conditions. In the study, the maximum ground acceleration value of 0.2 g and effective durations of 24 seconds are used. The validity of the artificial accelerograms is obtained by the comparison with the required envelope functions and the design response spectrum.

  • PDF

Study on Structural Safety of Car Securing Equipment for Coastal Carferry: Part I Estimation of Hull Acceleration using Direct Load Approach (국내 연안 카페리 차량 고박 장치 안전성에 관한 연구: 제I부 직접하중계산법을 이용한 선체 운동 가속도 산정)

  • Choung, Joonmo;Jo, Huisang;Lee, Kyunghoon;Lee, Young Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.440-450
    • /
    • 2016
  • The capsizing and consequent sinking of a coastal car ferry was recently reported, with numerous human casualties. The primary cause was determined to be a sudden turn with improperly stowed and secured cargo. Part I of this study introduces how long term acceleration components are determined from seakeeping analyses. A carferry with a displacement of 1,633 tonf was selected as the target vessel. Sea data that included the significant wave heights and periods were collected at four observation buoys, some of which were far away from two main voyage routes: Incheon-Jeju and Pusan-Jeju. Frequency response analyses were performed to obtain the linearized radiation force coefficients, hydrostatic stiffnesses, and wave excitation forces. Time response analyses were sequentially performed to produce the motion-induced acceleration processes. The probabilistic distributions of the acceleration components were determined using a peak and valley counting method. Long term extreme acceleration components were proposed as a final result.

Comparisons of Multi Material ALE and Single Material ALE in LS-DYNA for Estimation of Acceleration Response of Free-fall Lifeboat (자유낙하식 구명정의 가속도 응답 추정을 위한 LS-DYNA 에서의 다중물질 ALE 와 단일물질 ALE의 비교)

  • Bae, Dong-Myung;Zakki, Ahmad Fauzan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.552-559
    • /
    • 2011
  • An interest in Arbitrary Lagrangian Eulerian (ALE) finite element methods has been increased due to more accurate responses in Fluid-Structure Interaction(FSI) problems. The multi-material ALE approach was applied to the prediction of the acceleration response of free-fall lifeboat, and its responses were compared to those of the single-material ALE one. It could be found that even though there was no big difference in the simulation responses of two methods, the single-material and multi-material ALE ones, the latter multi-material ALE method showed a little bit more close response to those of experimental results compared to the former single-material ALE one, especially in the x- and z-direction acceleration responses. Through this study, it could be found that several parameters in the ALE algorithms have to be examined more carefully for a good structural safety assessment of FSI problems.

Dynamic response of rotor-bearing systems under seismic excitations (지진 하중을 받고 있는 회전축-베어링 시스템의 동적 거동에 관한 연구)

  • 김기봉;김양한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.992-1002
    • /
    • 1988
  • The dynamic response of rotor-bearing systems subjected to six-component nonststionary earthquake ground accelerations is analyzed. The governing equations of motion for the rotor are derived using Lagrangian approach. The six-component earthquake inputs result in both inhomogeneous and parametric excitations, so that the conventional spectral analysis of random vibration is not applicable. The method of Monte Carlo simulation is utilized to simulate the six-component nonstationary earthquake ground motions and to determine the response statistics of rotor-bearing systems. The significant influences due to rotational motions of seismic base on the overall structural response is demonstrated by a numerical example.