• Title/Summary/Keyword: 응결 지연

Search Result 92, Processing Time 0.027 seconds

Initial Behavior and Shrinkage Properties of Lime Mortars for Restoration of Cultural Heritage According to the Mixing Ratio (석회 종류와 배합비 별 문화재 보수용 석회 모르타르의 초기거동특성과 수축특성 연구)

  • Nam, Byeong Jik;Noh, Sang Kyun;Kim, Eun Kyung;Ahn, Sun Ah;Kang, So Yeong
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.456-474
    • /
    • 2020
  • This study investigated the initial behavior (flowability and setting properties) and shrinkage characteristics of lime mortar, based on the mixing ratio of hydrated lime (lump, powder) and commercial lime, which is primarily used for repairing and restoring cultural assets. The flowability showed that the optimum mixing water contents of the masonry lime mortar were 8-10% for the lump hydrated lime, 10-18% for the powdered hydrated lime, and 17-40% for the commercial hydrated lime. The results of the setting and shrinkage analysis showed that the average final setting time ratio compared to the standard of cultural asset repair was in the increasing order of commercial hydrated lime(0.4) < powder hydrated lime(5.6) < lump hydrated lime(5.7). Moreover, the average shrinkage ratio was ordered as lump hydrated lime(1.1) < powder hydrated lime(1.2) < commercial hydrated lime(3.0). The analysis of the physical and chemical characteristics of hydrated lime showed that the optimum mixing water content was reduced as the particle size of the lime increased, thus delaying the setting time and decreasing the length change rate (shrinkage). These results are expected to contribute to the prediction of the initial behavior and shrinkage characteristics of mortars using handmade and commercial lime during repair and restoration work on cultural, heritage buildings.

Effect of retarding agent on the properties of aggregate-exposed concrete produced by water jet washing method (지연제가 물씻기 공법에 의한 골재 노출콘크리트의 물성에 미치는 영향)

  • Park, Jun-Hui;Zha, O-Yang;Jung, Sang-Woon;Han, Dong-Yeop;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.173-174
    • /
    • 2014
  • In this research, the effect of the amount of retarder and the washing timing on the quality of aggregate-exposed concrete produced by water-jet washing method is evaluated as a series of test to develop the aggregate-exposed concrete as a concrete finishing method. As a result, the amount of losing aggregate and surface mortar was increased as the dosage of retarder was increased because of the hydration retarding effect of the retarder. Furthermore, as the washing timing was extended, the mortar on the surface of the concrete was not blown by water jet with 8 to 24 ml of retarder because of hydration of cement, hence the surface quality was poor. Therefore, washing timing of one day after concrete placement showed 90 % of aggregate exposed rate and 24 ml of retarder showed the most favorable result of aggregate exposure.

  • PDF

Properties of Hot Weather Nuclear Power Plant Concrete with Water Cooling Method and Retarding used (배합수 냉각방법 및 지연제 사용에 따른 서중 원전콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4602-4609
    • /
    • 2013
  • In summer and winter, the difference between the temperature during the day and that during the night is high, which leads to various problems during concrete placement, such as cracks and defects in the concrete as well as low durability and strength. Although nuclear power plant concrete is widely used for placement in all seasons, particular attention must be paid to its quality during the summer. Therefore, we evaluated the effects of a cooling method for mixing water, which is a commonly used hot weather precooling method, and the use of a retarder, on the characteristics of Nuclear Power Plant concrete. In the cooling method for mixing water, cold water at 5 was used, with 50% of the water content consisting of ice flakes. The effects of using a retarder were evaluated by reviewing the characteristics of the cement at the unset stage and after hardening. To evaluate the characteristics of the unset cement, we measured the slump, air volumes, setting times, and pressure strengths after hardening. Furthermore, we measured the heat of hydration at different temperatures; the loss of heat was minimized using insulation. Both the slump time and the complete ageing time of the air volume were found to be 120 min at $20^{\circ}C$ and 40 min at $40^{\circ}C$. In the case when the cooling method for mixing water was used and in the case when a retarder was used, the initial and final sets by penetration resistance were delayed, and the delay decreased with increasing air temperature. For the heat of hydration, the cooling method for mixing water not only lowered the maximum temperature but also delayed its attainment. However, the use of a retarder had no effect on the maximum temperature. Moreover, in the early ages (e.g., 3 and 7 days), the pressure strength of the concrete was lower than that of plain cement. However, the strength of 28-day concrete met the standard construction specifications.

The Effects of Hydration Retarding of Portland Cement by $MgSiF_6.6H_2O$ (규불화마그네슘에 의한 포틀랜드 시멘트의 수화 지연효과)

  • 한상호;이경희;정성철;김남호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.163-170
    • /
    • 1997
  • The retarding effects of MgSiF6.6H2O on the hydration of portland cement were studied. The setting time, flow value and compressive strength of mortar were measured and the mechanism of retardation was also studied by ion concentration in solution, SEM, BET, and X-ray diffraction. The results are as follows ; 1. Setting time was delayed by the addition of MgSiF6.6H2O. 2. The flow value of mortar decreases depending upon the amount of MgSiF6.6H2O. 3. The compressive strength was almost same or some increase on 28 days hydration. 4. The main retardation mechanism of MgSiF6 on the hydration of portland cement may be explained by the following hypothesis. MgSiF6 depressing the Ca++ and K+ ion concentration of cement paste solution be-cause of the recrystalization of K2SiF6 and CaF2 phase. The new products of K2SiF6 and CaF2 deposit on the surface of unhydrated cement powder and harzard the mass transfer through these layer. The low con-centration of Ca++, K+ ion in solution was decreasing the hydration rate of portland cement.

  • PDF

A Study on the Surface Activation and Quick-setting Characteristics of Blast Furnace Slag (Blast furnace slag의 표면 활성화 특성 및 quick-setting 특성에 관한 연구)

  • Lee, Woong-Geol;Song, Yung-Sin;Kang, Hyun-Ju;Choi, Hun;Song, Yong-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.273-274
    • /
    • 2010
  • This study investigated on the early hydration and physical characteristics of blast furnace slag through pH variation. The pH values applied to the experiments were, 12.0 and 13.0 which are the pH values of OPC, and type 3 of pH 14.0 which is a strong alkali condition. A paste and mortar method was used to test blast furnace slag and blast furnace slag containing 2wt% of gypsum. It was found that CAH and CSH phases were formed as key hydrates during the early hydration of blast furnace slag, and ettringites were produced extra during the early hydration of blast furnace slag containing 2wt% of gypsum.

  • PDF

Quality Variation of Concrete Containing Beverage and detergent During Placement (콘크리트 타설시 음료 및 세제류 유입에 따른 품질변화)

  • No Dong-Hyun;Kim Jong-Back;Hwang Yin-Seong;Li Bai-Shou;Yang Seong-Hwan;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.85-88
    • /
    • 2005
  • This study investigates influence on concrete adding beverage or detergent, by work man's mistakes during concrete placement in field. Overall, concrete adding beverage or detergent does not affect slump and air content, compared with control concrete. However concrete adding detergent resulted in significantly higher air content, due to inter facial activation ingredient. For the properties of setting time, concrete adding lactic acid beverage indicated the longest retarding properties, next was coffee and soft drink in order. Compressive strength of concrete, which retarded setting time. exhibited slightly improved value at 7 and 28 days respectively, while that of concrete adding detergent significantly decreased, due to higher air content.

  • PDF

해무 탐지 및 예측 기술의 현황 및 미래상

  • 송현호;이주영;김영택
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.319-320
    • /
    • 2022
  • 해무는 해면에 인접한 층에서 수증기가 응결하여 대기 중에 부유하는 현상으로 기상학적으로 수평 가시거리가 1km이하 일때로 정의되며 해무로 인해 항공기 이착륙 지연, 교통사고, 운항 통제, 인명 피해 등 사회적, 경제적 피해를 유발하고 있다. 본 연구에서는 기존의 해무 발생, 탐지, 예측과 관련한 연구를 비교 분석하여 향후 연구개발의 방향을 제시하고자 한다. 해무 발생, 예측과 관련하여 연구개발이 진행되어 왔으나 해무의 특성상 규칙성이 약하고 고정적인 측정법이나 이를 다루기 위한 네트워크가 부족하여 예측하기가 어렵다. 특히, 국내에서는 국립해양조사원과 기상청에서 해무 탐지 및 예측에 관한 연구개발 및 서비스가 진행되고 있으나 현업화가 이루어지지 않거나 특정지점에 대한 정보만 제공되고 있는 한계가 있다. 따라서, CCTV영상, 인공위성 영상, 시정계, 기상자료, 수치모형을 통해 수집된 정보를 통합하여 예측할 수 있는 인공지능기반의 해무 탐지 및 예측 기술개발이 진행되어야 할 것이다.

  • PDF

The Quality Properties of Mortar for Using Tailings from the Sangdong Tungsten One as Admixture for Concrete (상동광산 광미를 콘크리트용 혼화재료로 사용하기 위한 모르타르의 품질특성)

  • Choi Yun-Wang;Jung Moon-Young;Jung Myung-Chae;Koo Gi-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.383-390
    • /
    • 2004
  • This study has focused on the possibility for recycling tailings from the Sangdong tungsten mine as admixture for concrete. The XRD(X-ray diffraction analysis) and PSA(Particle size analysis) were performed to find mineralogical characteristics. As a result of XRD analysis, the tailings from the Sangdong tungsten fine were composed of quartz, chlorite, anorthite and cordierite etc. As a result of KSLT for cement mortar mixed with tailings from the Sangdong tungsten mine, most of heavy metals were determined as below the guide line for waste material. In addition, the setting time and compressive strength of cement mortar mixed with tailings from the Sangdong tungsten mine were investigated. It was indicated that the initial and final set were retarded according to increasing replacement of tailings from the Sangdong tungsten mine. The compressive strength of mortar was decreased with increasing replacement of failings from the Sangdong tungsten mine.

Durability of High-fluidity Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 고유동 폴리머 시멘트 모르타르의 내구성)

  • Joo Myung-Ki;Lee Youn-Su;Youn Do-Yong;Jung In-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.703-708
    • /
    • 2005
  • The effects of polymer-cement ratio and antifoamer content on the setting time and durability of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As the result, the setting time of the polymer-modified mortars using redispersible polymer powder tends to be delayed with increasing polymer-cement ratio, regardless of the antifoamer content. The water absorption, chloride ion penetration depth and carbonation depth of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder

Influence of Blast Furnace Slag and Anhydrite on Strength of Shotcrete (고로슬래그와 무수석고가 숏크리트의 강도에 미치는 영향)

  • Ryu, Sung-Hee;Shin, Kyung-Joon;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.87-95
    • /
    • 2012
  • This study investigated the compressive strength, flexural strength, setting time, and rebound when blast furnace slag and anhydrite, which are widely used mineral admixtures for concrete, are applied to shotcrete. When Ordinary Portland Cement (OPC) was replaced at a rate of 10% with blast furnace slag and anhydrite, the initial and final setting time requirements were all satisfied. However, when OPC was replaced at a rate of 20%, final setting was delayed, revealing that this mixture was not suitable for shotcrete. Compressive strength test results showed that the mixture with 10% OPC replacement rate met the target strength at 1 day and 28 days for permanent tunnel support usage. Particularly, the mixture designed with OPC replacement by blast furnace slag and anhydrite at rates of 5% showed the highest compressive strength. Rebound measurements revealed that this mixture exhibited excellent performance with 23% reduction in the rebound compared to the shotcrete that was produced with only OPC binder.