• Title/Summary/Keyword: 음향 가시화

Search Result 62, Processing Time 0.027 seconds

Rapid Cooling Mechanism Utilizing Acoustic Streaming Generated by Ultrasonic Vibrations (초음파 진동에 의해 발생된 음향유동을 활용한 급속냉각 메카니즘)

  • Loh, Byoung-Gook;Kwon, Ki-Jung;Lee, Dong-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1057-1066
    • /
    • 2006
  • Acoustic streaming Induced by longitudinal vibration at 30 kHz is visualized for a test fluid flow between the stationary glass plate and ultrasonic vibrating surface with particle imaging velocimetry (PIV) To measure an increase in the velocity of air flow due to acoustic streaming, the velocity of air flow in a gap between the heat source and ultrasonic vibrator is obtained quantitatively using PIV. The ultrasonic wave propagating into air in the gap generates steady-state secondary vortex called acoustic streaming which enhances convective cooling of the stationary heat source. Heat transfer through air in the gap is represented by experimental convective heat transfer coefficient with respect to the gap. Theoretical analysis shows that gaps for maximum heat transfer enhancement are the multiple of half wavelength. Optimal gaps for the actual design are experimentally found to be half wavelength and one wavelength. A drastic temperature variation exists for the local axial direction of the vibrator according to the measurement of the temperature distribution in the gap. The acoustic streaming velocity of the test fluid in the gap is at maximum when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which are specifically 6 mm and 12 mm.

Thermal distribution change in polyvinyl alcohol gel caused by focused ultrasound (폴리비닐알코올 젤의 집속초음파에 의한 온도분포 변화)

  • Kim, Jungsoon;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.576-584
    • /
    • 2020
  • In order to obtain basic information for using polyvinyl alcohol (PVA) gel as a tissue mimicking phantom for temperature visualization, the temperature change characteristics due to the focused ultrasound were examined for different concentration of PVA. To obtain the basic acoustic characteristics, the speed of sound, the attenuation coefficient, and the density depending on the PVA concentration were measured, and the thermodynamic characteristics, such as thermal conductivity and heat capacity, were measured. The range of temperature rising in the vicinity of the focal point due to the focused ultrasound was observed using a thermochromic film that changes color at 30 degree or more, and the discolored area was obtained by image processing of the recorded image. As the concentration of PVA increases in the given range of 2 wt% ~ 16 wt%, the area that rises above 30 degree inside the gel increases linearly. It is confirmed that the discolored area increases as the power applied to the focused ultrasonic transducer increases. These results showed good agreement with the simulation results using the finite element method.

Nondestructive Evaluation of Nanostructured Thin Film System Using Scanning Acoustic Microscopy (초음파현미경을 이용한 나노 구조 박막 시스템의 비파괴평가)

  • Miyasaka, Chiaki;Park, Ik-Keun;Park, Tae-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.437-443
    • /
    • 2010
  • In recent years, as nano scale structured thin film technology has emerged in various fields such as the materials, biomedical and acoustic sciences, the quantitative nondestructive adhesion evaluation of thin film interfaces using ultra high frequency scanning acoustic microscopy(SAM) has become an important issue in terms of the longevity and durability of thin film devices. In this study, an effective technique for investigating the interfaces of nano scale structured thin film systems is described, based on the focusing of ultrasonic waves, the generation of leaky surface acoustic waves(LSAWs), V(z) curve simulation and ultra high frequency acoustical imaging_ Computer simulations of the V(z) curve were performed to estimate the sensitivity of detection of micro flaws(i.e., delamination) in a thin film system. Finally, experiments were conducted to confirm that a SAM system operating at a frequency of 1 GHz can be useful to visualize the micro flaws in nano structured thin film systems.

Sound visualization in time domain by using spatial envelope (공간 포락을 적용한 시간 영역 음장 가시화)

  • Park, Choon-Su;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.33-36
    • /
    • 2007
  • Acoustic holography exhibits the spatial distribution of sound pressure in time or frequency domain. The obtained picture often contains far more than what we need in practice. For example, when we need to know only the locations and overall propagation pattern of sound sources, a method to show only what we need has to be introduced. One way of obtaining the necessary information is to use envelope in space. The spatial envelope is a spatially slowly-varying amplitude of acoustic waves which contains the information of sources' location. A spatial modulation method has been theoretically developed to get a spatial envelope. By applying the spatial envelope, not only the necessary information is obtained but also computation time is reduced during the process of holography. The spatial envelope is verified as an effective visualization scheme in time domain by being applied to complicated sound fields.

  • PDF

Sound Visualization Gallery: A means to express sound field in space and time (소리를 시각화하는 다양한 방법)

  • Choi, Joung-Woo;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.629-632
    • /
    • 2005
  • What does sound look like if we can see it? It might depend on the acoustic variables we want to see. In this article, we propose various ways to visualize or express sound field in much more intuitive manner. In particular, new visualization schemes that can effectively visualize sound intensity and 3D pressure field are proposed. This allows us to represent sound pressure, particle velocity and acoustic conductance at the same time, even in three-dimensional coordinate. Visualization examples corresponding to the proposed techniques show that we can successfully transfer the meaning of physical variable to visual space.

  • PDF

Virtual Reality Using X3DOM (X3DOM을 이용한 가상현실)

  • Chheang, Vuthea;Ryu, Ga-Ae;Jeong, Sangkwon;Lee, Gookhwan;Yoo, Kwan-Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.165-170
    • /
    • 2017
  • Web 3D technology can be used to simulate the experiments of scientific, medical, engineering and multimedia visualization. On the web environment, 3D virtual reality can be accessed well without strictly on operating system, location and time. Virtual Reality (VR) is used to depict a three-dimensional, computer generated realistic images, sound and other sensations to replicated a real environment or an imaginary setting which can be explored and interacted with by a person. That person is immersed within virtual environment and is able to manipulate objects or perform a series of action. Virtual environment can be created with X3D which is the ISO standard for defining 3D interactive, web-based 3D content and integrating with multimedia. In this paper, we discuss about X3D VR stereo rendering scene and propose new X3D nodes for the HMD VR (head mounted display virtual reality). The proposed nodes are visualized by the web browser X3DOM of X3D.

In-droplet preconcentration of microparticles using surface acoustic waves (표면탄성파를 이용한 액적 내 마이크로입자의 농축)

  • Park, Kwangseok;Park, Jinsoo;Jung, Jin Ho;Destgeer, Ghulam;Ahmed, Husnain;Ahmad, Raheel;Sung, Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.47-52
    • /
    • 2017
  • In droplet-based microfluidic systems, in-droplet preconcentration of a sample is one of the important prerequisites for biochemical or medical analysis. There have been a few studies on preconcentration in a moving droplet, but they are limited to practical applications since 1) their method are time-consuming or 2) they require specific properties such as electric and magnetic properties. In this study, we demonstrated the position control of polystyrene particles of 5 and $10{\mu}m$ in diameter inside a moving water-in-oil droplet using traveling surface acoustic waves. Since the frequencies for effective control of each diameter were found, microparticles with no labels could be utilized. In addition, the proposed method enabled on-demand preconcentration inside a polydimethylsiloxane microchannel. In-droplet preconcentration of microparticles was realized by splitting a mother droplet with manipulated particles at a downstream bifurcation zone. Given these advantages, the proposed system is a promising acoustofluidic lab-on-a-chip platform for preconcentration inside a droplet.

Determination of Impact Source Location Using a Single Transducer and Time Reversal Technique (단일센서와 시간역전법을 이용한 판에서의 충격위치 결정에 관한 연구)

  • Jeong, Hyun-Jo;Cho, Sung-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a plate structure is presented in this paper. The method employs a single sensor and spatial focusing of time reversal (TR) acoustics. We first examine the TR focusing effect at the impact position and its surroundings through simulation and experiment. The imaging results of impact points show that the impact source location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testings of plate-like structures.

Flow Visualization by Light Emission in the Post-chamber of Hybrid Rocket (광도측정에 의한 하이브리드 로켓 후연소실의 유동 가시화)

  • Park, Kyung-su;Choi, Go Eun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.677-683
    • /
    • 2015
  • Hybrid rocket combustion displays low frequency instability(LFI, 10~30Hz) at a certain condition. Vortex shedding in the post-chamber is suspected to cause the occurrence of LFI. This study focused on the visualization of flow image using light emissions from high temperature combustion gas. Results shows that combustion pressure oscillates at a frequency of about 18 Hz, which is in phase with oscillations of light emission. Since LFI is not a property of thermo-acoustic instability, this result suggested there exists a physical coupling of pressure fluctuations with light emissions proportional to chemical reaction. Also POD analysis shows that dominant symmetric spatial modes in the stable combustion shift suddenly into asymmetric spatial pattern with the appearance of LFI. Especially, the appearance of mode 3 is a typical change of flow dynamics in unstable combustion representing a rotational fluid motions associated with vortex shedding.

Hidden Object Detection System using Parametric Array (파라메트릭 배열을 이용한 은폐 물체 탐지 시스템)

  • Lee, Kibae;Lee, Jaeil;Bae, Jinho;Lee, Chong Hyun;Cho, Jung Hong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.78-86
    • /
    • 2017
  • In this paper, we propose hidden object detection system using parametric array based on acoustic signal that is harmless to human body. A transmit signal of the proposed detection system uses a high directive chirp signal generated from parametric array phenomenon, which uses technique to improve a signal to noise (SNR) of a received signal and a distance resolution trough the dechirp processing. The transmit sensor array is constructed as $8{\times}2$ and has a horizontal beam width of $7^{\circ}$ and vertical beam width of $26^{\circ}$. To verify the detection and visualization of the proposed system, a 2-axis driving control system based on linear stage was constructed, and A-scan, B-scan, and C-scan experiments was addressed for hidden object. From experimental results, we detected and visualized the hidden bronze plate and pipe by cloth and the visualized shapes was confirmed. Especially, the obtained errors was $0.015m^2$ for bronze plate, and $0.046m^2$ for pipe.