• Title/Summary/Keyword: 음향방출 에너지

Search Result 60, Processing Time 0.022 seconds

Interfacial and Durability Evaluation of Jute and Hemp Fiber/Polypropylene Composites Using Micromechanical Test and Acoustic Emission (미세역학적시험법과 음향방출을 이용한 Jute 및 Hemp 섬유/폴리프로필렌 복합재료의 내구성 및 계면 평가)

  • Kim, Pyung-Gee;Jang, Jung-Hoon;Kim, Sung-Ju;Hwang, Byung-Sun;Park, Joung-Man
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.55-62
    • /
    • 2007
  • Interfacial evaluation and durability of Jute and Hemp fibers/polypropylene (PP) composites were investigated. Moisture content of various treated conditions were measured by thermogravimetic analyzer (TGA). After boiling water test, mechanical properties and IFSS between Jute, Hemp fibers and PP matrix decreased. On the other hand, work of adhesion increased due to swelled fibril by water. Surface energies of Jute and Hemp fibers before and after boiling water test were obtained using dynamic contact angle measurement. IFSS was not always consistent with thermodynamic work of adhesion. In boiling water case, since Jute and Hemp fibers could be swelled by water, surface area and moisture infiltration space increased. Environmental effect on microfailure modes of Jute or Hemp fibers and Jute or Hemp fibers/PP composites were obtained by observing via optical microscope and by monitoring acoustic emission (AE) events and their AE parameters. After boiling water test, unlike Hemp fiber, microfailure process of Jute fiber could occur due to low tensile strength by swelled fibril. In addition, AE events occurred more and AE amplitude and energy became lower than those of before boiling water test.

In-Situ Application Study on the Power Plant Valve Leak Diagnosis Using Acoustic Emission Technology (음향방출을 이용한 발전용 밸브 누설 진단 현장 적용 연구)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.315-322
    • /
    • 2008
  • Valves in power plants are leaking internally by various damages including insertion of foreign objects on seat, seat crack, defects and fatigue crack of stem packing or welds etc. due to severe operating conditions such as high temperature and high pressure for extended period time. Acoustic emission(AE) technology should be applied in order to diagnose precisely and evaluate these valve internal leak. In this paper, results of studies which have accomplished in actual power plant are presented. We have analyzed background noise, AE signal level and frequency spectrum through laboratory tests on the basis of various actual conditions in power plant, and also have considered evaluation methods on the background noise, AE properties and the detectable minimum leak rate according to valve leak conditions through comparing with results of field tests in power plant. As a result of these studies, we conformed that evaluation of internal leak conditions including discrimination of leak or not, and the detectable minimum leak rate is possible, and also it is expected to contribute to safe operation and prevention of energy loss in power plants.

고체추진제의 연소불안정 특성함수에 대한 연구

  • 윤재건
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.05a
    • /
    • pp.7-11
    • /
    • 1998
  • 고체추진제(solid propellant)는 연료와 산화제가 혼합/결합되어 있어 폭발적인 연소반응을 통하여 많은 에너지를 빠른 시간에 방출한다. 많은 에너지가 급격히 변환되는 과정에서 소량의 에너지가 음향에너지(acoustic energy)로 변환되는 것은 피할 수 없다. 이와 같이 원하지 않는 에너지의 변환이 어느 정도 이상을 넘을 때, 연소 불안정(combustion instability) 현상이 발생했다고 한다. 상당히 많은 로켓 모타들이 연소불안정현상으로 인하여 개발기간의 지연과 설계변경 등으로 경제적 손실을 야기하고 있다. (중략)

  • PDF

Study on Evaluation of Plastic Deformation Zone at Crack Tip for the Multi-Passed Weld Region of the Pressure Vessel Steel Using Nondestructive Method (비파괴법에 의한 압력용기 강 다층용접부의 균열선단에서 소성변형 역성장거동 평가에 관한 연구)

  • Na, Eui-Gyun;Lee, Sang-Guen
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.473-478
    • /
    • 2009
  • The purpose of this study is to evaluate the behaviour of the plastic deformed zone at crack tip on the standard Charpy specimens which were taken from the multi-passed weld block of the pressure vessel steel. Notch was machined on the standard Charpy test specimens and pre-crack which was located around the fusion line was made under the repeat load. Four point bend and acoustic emission tests were carried out simultaneously. The size of plastic region at crack tip was calculated using stress intensity factor. Relationships between characteristics of acoustic emission and plastic zone size at crack tip were discussed through the cumulative AE energy. Regardless of the specimens, AE signals were absent within the elastic region almost and most of AE signals were produced at the plastic deformation region from yield point to the mid-point between yield and maximum load. More AE signals for the weldment were produced compared with the base-metal and PWHT specimen. Relations between plastic deformed zones at crack tip and cumulative AE energy for the weldment and PWHT specimen were different quietly from the base-metal. Besides, number of AE counts for the weldment was the larger than those of the base-metal and PWHT specimen.

Source Location on Full-Scale Wind Turbine Blade Using Acoustic Emission Energy Based Signal Mapping Method (음향방출 에너지 기반 신호 맵핑 기법을 이용한 실물 풍력 블레이드 손상 검출)

  • Han, Byeong-Hee;Yoon, Dong-Jin;Huh, Yong-Hak;Lee, Young-Shin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.443-451
    • /
    • 2013
  • Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. In this study, the activities of AE signals generated from external artificial sources was evaluated and located by new developed signal mapping source location method and this test is conducted by 750 kW full-scale blade. And a new source location method was applied to assess the damage in the wind turbine blade during step-by-step static load test. In this static loading test, we have used a full scale blade of 100 kW in capacity. The results show that the acoustic emission activities give a good agreement with the stress distribution and damage location in the blade. Finally, the applicability of the new source location method was confirmed by comparison of the result of source location and experimental damage location.

Bearing Multi-Faults Detection of an Induction Motor using Acoustic Emission Signals and Texture Analysis (음향 방출 신호와 질감 분석을 이용한 유도전동기의 베어링 복합 결함 검출)

  • Jang, Won-Chul;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.55-62
    • /
    • 2014
  • This paper proposes a fault detection method utilizing converted images of acoustic emission signals and texture analysis for identifying bearing's multi-faults which frequently occur in an induction motor. The proposed method analyzes three texture features from the converted images of multi-faults: multi-faults image's entropy, homogeneity, and energy. These extracted features are then used as inputs of a fuzzy-ARTMAP to identify each multi-fault including outer-inner, inner-roller, and outer-roller. The experimental results using ten times trials indicate that the proposed method achieves 100% accuracy in the fault classification.

The Signal Characteristics from Crack of Brittle Materials by Vickers Load (비커스 압입 하중에 의한 취성재료의 균열 신호특성)

  • Nam, Ki-Woo;Kim, Hyun-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.125-131
    • /
    • 2002
  • we analyzed acoustic emission signals obtained from three kinds of brittle materials under compression load by Vickers hardness tester. The results obtained can be summarized as follows; The signal in each material could be divided into three signal based on the properties of load. All specimens were not detected acoustic emission signals in stage II which was load constant region., and were detected in stage I and stage III. Glass was detected high amplitude signals in stage III. $Al_2O_3\;and\;Al_2O_3/Sic$ were detected high amplitude signals in stage I.

Responses of Ultrasonic Backscattered Energy and AE Charateristics on the Progressive Damage of Crossply Composite Laminates (초음파와 음향 방출법을 이용한 복합재료 직교적층판의 점진적 손상과정에 관한 연구)

  • Jeon, Heung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1084-1092
    • /
    • 2000
  • Responses of ultrasonic back scattered energy and AE (Acoustic Emission) characteristics related to the progressive damage of $[0/90-{2}]_s$ and $[0/90-{4}]_s$ crossply laminates were studied. It was found that the ultrasonic backscattered energy was sensitive to the matrix cracking but not sensitive to other failure mechanisms. However, AE was proved to be sensitive to matrix cracking as well as other failure mechanisms.AE signals were analyzed by investigating the amplitude and number of counts per event for corresponding applied strain. Loading and unloading tests were conducted separately. AE results showed Kaiser effect in the crossply composite laminates and ultrasonic results supported the AE results.

Fatigue Crack Growth Behavior of and Recognition of AE Signals from Composite Patch-Repaired Aluminum Panel (복합재 패치로 보수된 알루미늄 패널의 피로균열 성장거동과 AE신호의 유형인식)

  • Kim, Sung-Jin;Kwon, Oh-Yang;Jang, Yong-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.48-57
    • /
    • 2007
  • The fatigue crack growth behavior of a cracked and patch-repaired Ah2024-T3 panel has been monitored by acoustic emission(AE). The overall crack growth rate was reduced The crack propagation into the adjacent hole was also retarded by introducing the patch repair. AE signals due to crack growth after the patch repair and those due to debonding of the plate-patch interface were discriminated by usiag the principal component analysis. The former showed high center frequency and low amplitude, whereas the latter showed long rise tine, low frequency and high amplitude. This type of AE signal recognition method could be effective for the prediction of fatigue crack growth behavior in the patch-repaired structures with the aid of AE source location.

Prediction of the Penetration Energy for Composite Laminates Subjected to High-velocity Impact Using the Static Perforation Test (정적압입 관통실험을 이용한 복합재 적층판의 고속충격 관통에너지 예측)

  • You, Won-Young;Lee, Seokje;Kim, In-Gul;Kim, Jong-Heon
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.147-153
    • /
    • 2012
  • In this paper, static perforation tests are conducted to predict the penetration energy for the composite laminates subjected to high velocity impact. Three methods are used to analyze the perforation energy accurately. The first method is to select the perforation point using the AE sensor signal energy, the second method is to retest the tested specimen and use the difference between initial and retested perforation energy, and the third method is to select the perforation point based on the maximum loading point in the retested load-displacement curve of the tested specimen. The predicted perforation energy results are presented and verified by comparing with those by the high velocity tests.