Study on Evaluation of Plastic Deformation Zone at Crack Tip for the Multi-Passed Weld Region of the Pressure Vessel Steel Using Nondestructive Method

비파괴법에 의한 압력용기 강 다층용접부의 균열선단에서 소성변형 역성장거동 평가에 관한 연구

  • 나의균 (군산대학교 기계공학부) ;
  • 이상근 (한국폴리텍 V김제대학 산업설비자동학과)
  • Received : 2009.02.20
  • Accepted : 2009.08.14
  • Published : 2009.10.30

Abstract

The purpose of this study is to evaluate the behaviour of the plastic deformed zone at crack tip on the standard Charpy specimens which were taken from the multi-passed weld block of the pressure vessel steel. Notch was machined on the standard Charpy test specimens and pre-crack which was located around the fusion line was made under the repeat load. Four point bend and acoustic emission tests were carried out simultaneously. The size of plastic region at crack tip was calculated using stress intensity factor. Relationships between characteristics of acoustic emission and plastic zone size at crack tip were discussed through the cumulative AE energy. Regardless of the specimens, AE signals were absent within the elastic region almost and most of AE signals were produced at the plastic deformation region from yield point to the mid-point between yield and maximum load. More AE signals for the weldment were produced compared with the base-metal and PWHT specimen. Relations between plastic deformed zones at crack tip and cumulative AE energy for the weldment and PWHT specimen were different quietly from the base-metal. Besides, number of AE counts for the weldment was the larger than those of the base-metal and PWHT specimen.

본 연구에서는 비파괴법을 이용하여 압력용기 강 다층용접부에서 채취한 표준 샤르피 시험편의 균열선단에서 형성되는 소성변형 거동을 평가하였다. 모재, 후열처리재 및 용접재를 대상으로 시험편에 기계적인 노치를 가공한 후 예균열(pre-crack)을 낸 다음 4점 굽힘실험과 음향방출(acoustic emission: AE)실험을 동시에 실시하였다. 균열선단은 용접재외 후열처리재의 경우 용융선 근처에 위치하도록 하였다. 하중이 가해짐에 따라 균열선단에서 형성되는 소성영역의 크기는 응력확대계수를 이용하여 구했으며, 각 시험편에 대한 소성역의 크기와 음향방출 특성과의 관계는 축적된 AE 에너지 관점에서 고찰하였다. 시험편에 관계없이 탄성역역에서는 거의 AE신호가 감지되지 않았으며, 대부분의 AE신호는 소성변형 과정에서 발생하였다. 또한, 용접재가 모재와 후열처리재에 비해 AE신호가 훨씬 많이 발생하였다. 모재와 후열처리재 및 용접재의 균열선단에서 소성영역 크기와 축적된 AE에너지와의 관계는 현저히 다르게 나타났으며, 용접재의 AE counts는 모재와 후열처리재에 비해 많이 발생하였다.

Keywords

References

  1. K. Ono, H. B. Teoh and I. Roman, 'Fracture induced acoustic emission of A533B steel effects of test temperature and fracture mechanisms,' Progress in Acoustic Emission II, pp. 105-113 (1984)
  2. N. Nakamura, N. Ringshall, Y. Fukuzawa and A. Adachi, 'Acoustic emission during the deformation of iron crystals,' Proc. of the 5th International Acoustic Emission Symposium, pp. 318-325 (1980)
  3. E. G. Na, K. Ono and D. W. Lee, 'Evaluation of fracture behavior of SA-516 steel welds using acoustic emission analysis,' Journal of Mechanical Science and Technology, Vol. 20, No. 2, pp. 197-204 (2006) https://doi.org/10.1007/BF02915821
  4. E. G. Na S. K. Koh and D. W. Lee, 'AE evaluation of relationship between AE signals and fracture mechanisms for the pressure vessel steel,' Advanced Materials Research, Vol. 26-28, pp. 1181-1186 (2007) https://doi.org/10.4028/www.scientific.net/AMR.26-28.1181
  5. 나의균, 유효선, 김훈, 'HT-60강 용접부의 SCC 및 AE신호특성에 관한 연구', 비파괴검사학회지, Vol. 21, No. 1, pp. 62-68 (2001)
  6. D. P. Rooke and D. J. Cartwright, Compendium of Stress Intensity Factors, pp. 62-68, Her Majesty's stationary office, London (1974)