• Title/Summary/Keyword: 음악 검색

Search Result 232, Processing Time 0.029 seconds

A Study on the Efficient Search of an Audio Database using Musical Interval Contour (음정 곡선을 이용한 효율적인 오디오 데이터베이스 탐색에 관한 연구)

  • 지정규;오해석
    • The Journal of Information Technology and Database
    • /
    • v.4 no.2
    • /
    • pp.97-104
    • /
    • 1998
  • 본 논문은 디지털 오디오 도서관에 대규모 선율 데이터베이스로부터 임의의 곡을 효율적으로 탐색하기 위하여 음정곡선을 색인키로 사용하는 방법에 대해 기술했다. 사용자가 검색하고자 하는 음악의 일부 선율을 노래하면 입력된 음신호를 인식하여 음높이 정보를 추출한다. 그리고, 음표간의 음정을 계산하여 음표순으로 배열함으로써 음정 곡선을 만든다. 제안한 은표열 탐색 알고리즘에 생성된 음정 곡선을 탐색 패턴으로 입력하여 선율 데이터베이스의 음표열을 비교 조사한다. 그러면 근사 음정 곡선을 가진 후보곡을 탐색할 수 있다. 제안한 음표열 탐색 알고리즘은 실험을 통해 동적 프로그래밍 및 상태 대조 알고리즘과 비교한 결과 탐색 시간이 2배이상 향상되었다.

모바일RFID포럼

  • Lee, Hyeok-Jae
    • TTA Journal
    • /
    • s.102
    • /
    • pp.25-31
    • /
    • 2005
  • 국내 휴대폰 기술은 세계적인 이동통신 인프라를 바탕으로 세계 최고 수준의 기술을 유지하고 있으며, 휴대폰을 통해 전자통장, 영화감상, MP3 음악감상, 증권, 텔레매틱스, 게임, 복권, 사진촬영 등을 할 수 있게 되었다. 점차 유비쿼터스 정보단말로 진화하고 있는 휴대폰에 RFID 리더를 장착하는 기술융합을 통하여 약품 복용법 안내, 영화 미리보기, 상품정보 검색 등의 다양한 서비스를 사물에 부착된 태그와 단말기를 이용하여 개인에게 정보 등을 직접 전달할 수 있다. 모바일 RFID는 Off-Line의 사물에 On-Line을 접목시켜 사람과 사물의 직접적 정보소통 관계를 만들어 유비쿼터스(Ubiquitous) 시대를 앞당기는 첨병으로서 국민의 삶의 질을 높이고, 새로운 산업영역을 발굴하여, 경제적 부가가치 증대 및 국가경쟁력 향상을 주도할 수 있는 핵심분야이다.

  • PDF

Popuar Music Analysis with Rhetoric (수사법을 활용한 대중음악 분석)

  • Seo Jung-Bum;Bae Jae-Hak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.502-504
    • /
    • 2005
  • 본 논문에서는 수사법을 이용한 대중가요 분석법을 제시한다. 분석목표는 가사와 악곡의 수사구조 파악이다. 그 결과 가요의 가사와 곡이 어떻게 대응하여 전개되는지 확인해 볼 수 있었다. 이를 바탕으로 (1) 가요의 주제 가사와 선율을 빠른 시간 안에 찾아낼 수 있고 (2) 가요의 효과적인 분류와 검색, 또한 (3) 곡의 충실성 또는 유행가능성을 예측해보는 데에도 활용될 수 있을 것이다.

  • PDF

A Content-Based Music Retrieval Algorithm Using Melody Sequences (멜로디 시퀸스를 이용하는 내용 기반 음악 검색 알고리즘)

  • 위조민;구경이;김유성
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.250-252
    • /
    • 2001
  • With the growth in computer and network technologies, some content-based music retrieval systems have been developed. However, their retrieval efficiency does not satisfy user's requirement yet. Of course users hope to have a more efficient and higher precision for music retrieval. In this paper so for these reasons, we Propose an efficient content-based music retrieval algorithm using melodies represented as music sequences. From the experimental result, it is shown that the proposed algorithm has higher exact rate than the related algorithms.

  • PDF

XML Representation of a Sheet Music for Chorus (합창곡 악보의 XML 표현)

  • 김정훈;김선호;채진석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.72-74
    • /
    • 1999
  • XML은 HTML의 단순성과 SGML의 복잡성을 동시에 극복하기 위한 노력으로 시작되어 HTML이나 SGML과는 다른 새로운 세계를 만들어 내고 있으며, 인터넷 문서 표현과 관련된 여러 분야에서 활발하게 연구되고 있다. 이 논문에서는 차세대 인터넷 문서 표현 언어로 주목받고 있는 XML을 이용하여 합창곡의 악보를 표현하는 기법을 제시한다. 이 논문에서는 합창곡 악보를 표현하기 위해 정의된 새로운 마크업 언어인 ScoreML(Score Markup Language)을 소개하고, ScoreML로 작성된 XML 문서를 웹에서 볼 수 있도록 ScoreML 브라우저의 설계 및 구현에 대해 기술한다. ScoreML을 사용하여 작성된 XML 문서는 악보 표현뿐만 아니라 음악 데이터의 저장과 검색에도 사용될 수 있다.

  • PDF

K-d Tree Structured Representation for MusicXML Music Scores (MusicXML 전자악보를 위한 K-d 트리 구조 표현)

  • Kim, Taek-Hun;Yang, Sung-Bong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.252-257
    • /
    • 2007
  • MusicXML은 다양한 전자악보 형식들이 음악을 악보로 표현하는데 있어 지니는 한계를 잘 극복하면서 응용성, 확장성 및 공개성 등의 장점으로 인해 현재 전자악보의 표준으로 가장 적합한 것으로 평가되고 있는 악보 형식이다. 그러나 MusicXML은 XML을 기반으로 한 텍스트 데이터이기 때문에 이러한 악보 형식을 실제 악보로 변환하거나 연주하는 것은 물론 실제 악보 내용을 기반으로 한 악보 검색이 용이하도록 적절한 데이터 구조로 표현하는 것이 필요하다. 본 논문에서는 MusicXML 악보에 대하여 다차원 속성 정보를 가진 데이터의 표현에 용이한 k-d 트리 기반 데이터 구조로 표현하는 방법을 제안한다. 논문은 또한 악보에 대한 k-d 트리 구조를 보다 다양한 응용에 활용할 수 있도록 k-d 트리를 확장하여 구조화하는 방법을 제시한다. 본 논문에서 제안한 방법은 특히 내용을 기반으로 한 악보 정보 검색에 유용하게 이용될 수 있다.

  • PDF

A Study on Retrival Using Educational Visual C++ (교육용 Visual C++를 이용한 검색에 관한 연구)

  • 전근형;김광휘
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • This study is discussed research on management of items in PC's GUI(Graphical User Interface) environment. A items are general knowledge data like books, musical CD, English CD, and game CD, which are the time when we don't seek the right items in the case of re-reading and re-listening the items. In this paper, We propose an example designed to be used in the management of a items. The proposed example is implemented by educational VC++(Visual C++) programming language. This program and discussions for management of a items will understand the development procedure of searching and storing data, which will provide some basics into designing large database systems.

  • PDF

Development of Music Recommendation System based on Customer Sentiment Analysis (소비자 감성 분석 기반의 음악 추천 알고리즘 개발)

  • Lee, Seung Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.197-217
    • /
    • 2018
  • Music is one of the most creative act that can express human sentiment with sound. Also, since music invoke people's sentiment to get empathized with it easily, it can either encourage or discourage people's sentiment with music what they are listening. Thus, sentiment is the primary factor when it comes to searching or recommending music to people. Regard to the music recommendation system, there are still lack of recommendation systems that are based on customer sentiment. An algorithm's that were used in previous music recommendation systems are mostly user based, for example, user's play history and playlists etc. Based on play history or playlists between multiple users, distance between music were calculated refer to basic information such as genre, singer, beat etc. It can filter out similar music to the users as a recommendation system. However those methodology have limitations like filter bubble. For example, if user listen to rock music only, it would be hard to get hip-hop or R&B music which have similar sentiment as a recommendation. In this study, we have focused on sentiment of music itself, and finally developed methodology of defining new index for music recommendation system. Concretely, we are proposing "SWEMS" index and using this index, we also extracted "Sentiment Pattern" for each music which was used for this research. Using this "SWEMS" index and "Sentiment Pattern", we expect that it can be used for a variety of purposes not only the music recommendation system but also as an algorithm which used for buildup predicting model etc. In this study, we had to develop the music recommendation system based on emotional adjectives which people generally feel when they listening to music. For that reason, it was necessary to collect a large amount of emotional adjectives as we can. Emotional adjectives were collected via previous study which is related to them. Also more emotional adjectives has collected via social metrics and qualitative interview. Finally, we could collect 134 individual adjectives. Through several steps, the collected adjectives were selected as the final 60 adjectives. Based on the final adjectives, music survey has taken as each item to evaluated the sentiment of a song. Surveys were taken by expert panels who like to listen to music. During the survey, all survey questions were based on emotional adjectives, no other information were collected. The music which evaluated from the previous step is divided into popular and unpopular songs, and the most relevant variables were derived from the popularity of music. The derived variables were reclassified through factor analysis and assigned a weight to the adjectives which belongs to the factor. We define the extracted factors as "SWEMS" index, which describes sentiment score of music in numeric value. In this study, we attempted to apply Case Based Reasoning method to implement an algorithm. Compare to other methodology, we used Case Based Reasoning because it shows similar problem solving method as what human do. Using "SWEMS" index of each music, an algorithm will be implemented based on the Euclidean distance to recommend a song similar to the emotion value which given by the factor for each music. Also, using "SWEMS" index, we can also draw "Sentiment Pattern" for each song. In this study, we found that the song which gives a similar emotion shows similar "Sentiment Pattern" each other. Through "Sentiment Pattern", we could also suggest a new group of music, which is different from the previous format of genre. This research would help people to quantify qualitative data. Also the algorithms can be used to quantify the content itself, which would help users to search the similar content more quickly.

A Content-based Audio Retrieval System Supporting Efficient Expansion of Audio Database (음원 데이터베이스의 효율적 확장을 지원하는 내용 기반 음원 검색 시스템)

  • Park, Ji Hun;Kang, Hyunchul
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.811-820
    • /
    • 2017
  • For content-based audio retrieval which is one of main functions in audio service, the techniques for extracting fingerprints from the audio source, storing and indexing them in a database are widely used. However, if the fingerprints of new audio sources are continually inserted into the database, there is a problem that space efficiency as well as audio retrieval performance are gradually deteriorated. Therefore, there is a need for techniques to support efficient expansion of audio database without periodic reorganization of the database that would increase the system operation cost. In this paper, we design a content-based audio retrieval system that solves this problem by using MapReduce and NoSQL database in a cluster computing environment based on the Shazam's fingerprinting algorithm, and evaluate its performance through a detailed set of experiments using real world audio data.

Effects of Music Therapy on Cognitive function and Agitation, Anxiety and Depression in Dementia Elderly: a Systematic Review and Meta-analysis of Randomized Controlled Trials (음악요법이 치매노인의 인지기능, 초조행동, 불안 및 우울에 미치는 효과: 체계적 고찰 및 메타분석)

  • Chai, Gong Ju;Lee, Mi-Kyung;Nam, Eun Sook;Lee, Ho Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.520-530
    • /
    • 2021
  • Objectives: This study aimed to identify the effects of music therapy on cognitive function, agitation, anxiety and depression in the elderly with dementia. Method: A comprehensive literature search was performed on PubMed, EMBASE, Cochrane Library, CINAHL, Web of Science, Google scholar and PsycINFO, for the period 2010 to 2019. In the meta-analysis, the standardized mean difference (Hedges' g) and 95% confidence interval were calculated as summary measure, and the random effect model and inverse variance method were applied using the RevMan 5.4 program. A total of 13 studies were included; all were determined to be acceptable, based on the Cochrane collaboration's tool for assessing risk of bias. Results: The effect size (Hedges' g) was 0.31 (95% CI: -0.02, 0.65) for cognition and -0.03 (95% CI: -0.17, 0.11) for agitation behavior as the primary outcomes, and 0.61 (95% CI: -1.17, -0.05) for anxiety and -0.44(95% CI: -0.88, 0.00) for depression as the secondary outcomes. Subgroup analysis by type of music intervention revealed that combined music therapy has a significantly increasing beneficial effect on cognition of dementia patients (g=0.45[95% CI: 0.03, 0.87]). Conclusion: Music therapy was determined to exert beneficial effects in reducing anxiety and depression, and combined music therapy demonstrated improved cognitive functions in elderly patients with dementia.