Az AA2E o] g3

Hzn°

g 7

Aol AHA

u}

L

&t A4 guE

latuetin M E o

zuminwei@yahoo.com

£9721046@inhavision.inha.ac.kr

yskim@inha.ac.kr

A Content-Based Music Retrieval Algorithm Using Melody Sequences

Zu-Min Wei®

Kyong-1 Ku

Yoo-Sung Kim

Dept. of Computer Science & Engineering, Inha University, Incheon 402-751, Korea

ABSTRACT
With the growth in computer and network technologies, some content-based music retrieval

systems have been developed. However,

their retrieval efficiency does not satisfy user’s

requirement yet. Of course users hope to have a more efficient and higher precision for music
retrieval. In this paper, so for these reasons, we propose an efficient content-based music retrieval
algorithm using melodies represented as music sequences. From the experimental result, it is
shown that the proposed algorithm has higher exact rate than the related algorithms.

1. INTRODUCTION

With the growth in digital representation of music, and of
it
interested to search collections of music. So retrieving music
from a collection of musical scores is essentially a matter of
matching input strings against a database. This is a familiar
problem information retrieval, and so many efficient
algorithms for finding substring in a body of text have been
proposed.

music stored in these representations, is increasingly

in

Unfortunately, there are some problems with seeking an exact
string-matching algorithm between the transcribed melodies and
the music database. The first is the variability in the way that
music is performed. For example, folk songs appear in many
variants, while popular songs and well-known standards songs
are often performed differently from the way they are notated.
And then this is retrieval for music, not for text. So if an exact
string-matching algorithm is used for music retrieval, it may be
insufficient for application in tonal music as it disregards tonal
qualities of pitches and pitch intervals. For example, a tonal
transposition from a major key to a minor key resuit in a
different encoding of the musical passage and thus exact string
matching cannot detect the similarity between the two passages.

For it, we account it is necessary to allow approximate string
matching [5] on the score database in order to retrieve music.

Also we know that approximate string matching algorithms
have been proposed like 8—approximate string matching and y-
approximate string matching [2]. These kinds of string matching,
however, are not efficient well yet. Especially, when § value is
larger, exact rate of retrieval will be low by the single 8-
approximate string matching.

In this paper, so for reasons mentioned above, we will present
a more efficient approximate string—-matching algorithm named
(8, y)-approximate string—matching algorithm for numeric string

250

which is transcribed melodies. We will unite §-approximate
string matching and y-approximate string matching well, and
then obtain a more efficient and more perfect result for music
retrieval, especially for larger 8 values and larger melody
corpuses.

In the rest of this paper is organized as follows. As the related
work, drawbacks of traditional algorithm and musical content-
based Information Retrieval System are introduced in section 2.
The basic string definition, the (8, y)-approximate string
matching algorithm and its processing are described in section 3
The experimental result is discussed in section 4. Finally, the
conclusion will be stated in section 5.

2. RELATED WORK

2.1 Drawbacks of Traditional Algorithm

We know that some approximate string matching algorithms
have been proposed like 8-approximate string matching and y—
approximate string matching. They, however, still have some
shortcomings. If & is larger, the efficiency of retrieval may be
lower. Especially, in a larger music database, it may be found
many irrelevant results. For example, we use &-approximate
string matching to find two matching (3,4,6,2) and (4,5,7,1) for
the query (3,4,6,2), 6=1(see Table 1 and 2). From the two
results, however, we can note that the second result is
irrelevant with the query. So, the result is an inappropriate
result for user’s query. Of course, this has been proved by the
experiment. Also retrieval by the y-approximate string matching
is not very efficient also.

To overcome these drawbacks and obtain a more efficient
retrieval, we propose an efficient algorithm that joins &-
approximate string matching and y-approximate string matching.

Following, we will describe the related environment for music
retrieval.

2001495 =4 Rasts] 718 et E=FF Vol. 28. No. 2

2.2 Content-Based Music Retrieval System

In content-based music retrieval systems, user query is in
humming melody instead of text.

The system consists of components as follows:

- A web browser-based user interface. User inputs his query
through it.

- Transcription. User’s humming is transformed into a string
of the pitch interval.

+ Searching Algorithm. Using proposed algorithm searching
music objects matching the user’s query.

- Music Database, It stores the music objects.

In generally, user's humming query is translated into a string
of pitch values, and then by using the searching algorithm, the
appropriate music objects are retrieved as the result from music
database.

3. (3,y)-APPROXIMATE STRING MATCHING ALGORITHM
3.1 Basic String Definition

A string is a sequence of symbols from an alphabet £; A
string x of length n is represented by X,..X,, where x,€Y, for 1<
i<n. Let T be an alphabet of integers and 8§ is an integer.

Two symbols a, b of £ are said to be §—approximate, denoted
a =3 b, if and only if
la - bls 5 (1-1)

We say that two string X, y are §—approximate, denoted x = v,
if and only if
x|=|y] ana x =y, ¥, e {l.]x} (1-2)
For a given integer y we say that two strings x, y are y-
approximate, denoted x =, y, if and only if

[x|=1»| and i.x,—y,|<y (1-3)
3

Furthermore, if and only if X and y satisfy condition (1-2) and
(1-3), we say that two strings X, y are (8, y)-approximate,
denoted x =; ,y. This approximate string-matching algorithm is
just presented for this paper.

3.2 (3, v)-Approximate String Matching Definition and Its Processing

The algorithm is based on O(1) time computation of the “Delta
States” DState, and the “Gamma States” GState,. It is by using
bit operation under the assumption that m less or equal than the
number of bits in a machine word.

Given a string S = s,..8, , A pattern P = p,..py ; then compute

all position r of S such that P =5 , S[r...rt m-1], where r&{1-n}.

The detailed steps of the algorithm as follows:

1. Firstly, we need compute “Delta Table” DT. Set DTl[el=f,
where e denotes a symbol occurring in S and f=f;..f, is a
binary word, if |e_p‘[5§, then f; = 1, otherwise fi= 0 for i€
{l.m}.

2. Also we need compute “Gamma Table” GT. Set GT[e] = f,
where e denotes a symbol in the alphabet and f = f..fpis a
binary word, if|e — p,lS § . then £ - |e - p,|' otherwise f;
= 0 for i€{1..m}. Here, each f; is stored as a binary number
of dbits where et e et

3. Let “LS" is a bit-wise operation that shifts the bits of a

binary word by one position to the left. The definition is as
follows:
DState, = (LS(DState,-,) OR 1) AND DTIS,] (1-4)
For r = 1..m and initial DState, = O
4. Let “RS” is a bit~wise operation that shifts the bits of a
binary word by d position to the right. The definition is as
follows:
GState, = RS(GState,-,,d) + GTIS,] (1-5)
For r = 1..m and initial GState, = 0
5. If and only if the m~th bit of DState, is 1 or equivalently if and
only if DState, is greater than or equal to 2™ when it is
viewed as a decimal integer, and the m-th block of d bits
taken as an integer is less or equal to y, then we say that
there is (6, y)-approximate string matching at position (r-
m+ 1).

3.3 (3, y)-Approximate String Matching Algorithm

The algorithm is a union of both §-approximate string
matching and y—approximate string matching. Namely, if and
only if condition (1-4) and (1-5) is satisfied at the same time,
then that is (5, y)-Approximate String Matching Algorithm.

Example: In example, let = {1,2..9}. We suppose P= {3,4,6,2},
$={3,4,6,2,8,2,4,5,7,1}, 8=1,y=3. In the preprocessing table,
DTle] denctes the position wherele - p,{< & . For example,
DTI[4] = 0011 because |4 - p,|< 1 fori = 1,2. And also we
will use blocks of size three (d = 3) to store the |e - p,|
values where |e = P,|$ & . For example, GT[3] = 000 001 000
001 because|4 - p,|< 1, fori= 124 (see Table 1,2,3,4)

Here note that we find two matchings for our query in Table 2.
Their end of position is 4 and 10 respectively. In fact, this is just
retrieval by the single §-approxirnate string matching that we
mentioned above. Then, as shown in Table 4, using the
proposed matching algorithm, we only find one matching, that is,
we did not find the second result that it cannot be inappropriate
for user query. Because at position 10, it is 100, that is 4>y= 3.

Thus, its efficiency is improved.

A complete specification of the algorithm is listed as follows:
[Algorithm 1]

Procedure Shift (P, S, 8, y) {n=|S}, m=|P|}

1. Begin

o s 1 ifle-pl<é
! 0 otherwise

v, e{l.mpv, e
3. !

i .
GTdi-d.git [e]= {e—pl y o7 [e]:]

n ot vt e{l..m}\# el
DState, « 0

GState, « 0

4
5
6. Forr « 1tondo
7. DState, « (LS(DState,,) OR 1) AND DTI[S,]
8 GState, « RS(GState,-;, d) + GTIS,]
9 If [DState;];p 2 2m-1 AND GStatedm-d.am-1<Y
Then write (r-m+ 1)

10. End For

11. End
[End of Algorithm 1]

200195 3RS 7+& e E=FA Vol 28. No. 2

Table 1. “Delta Table” DT
T v [P]0T [Dr ot oL or[or]or]oer
! [1] (2} { (31 | f4) | 51 § {61 | (7] (81 | 191
T | 2 T T 1 0 | 0] 6] 061010
71 6lo0]loloTl0 T 1 1 [
71510101 T F B S T)
T [3]0 1 1 T 0o]oJ]o]lo
Table 2. Computing DStates and Finding 8—approximate matching
v v 2l slals el s]s]e]o
5, slalslz]aleafals)z{n
LsDStater) OR loop1foor1o111] 1001 Joot1foootjoortfor 1o 100t
pris) Jio11fooii]o100]1001foooo]1001foe1 1o110]0100] 1000
DState, 0001]0011o10¢ 10010000 c001[0011§0110{6100]1000)
pstate b § 4 |3l alolol i]s]s]4]ls
Table 3. “Gamma Table” GT
i] 2 3 | 4 5 1 6 7 | & 5
T | 3 { ooo [oor [ooo Joor | ooo [ooo oo [ooo | oo
2 1 4] 000] 000§ oor | ovo | oor [ooo T ooo [ooo [voo
3 § 6] 000} 000 [000 | 000] 00L | 000 | oot § 000 | 000
4 | 2] oot | 000 | oot] ooo | ooo | ooo | oo § ooo | ooo
Table 4. Finding (3, y)-Approximate String Matching
c 1 1] 21 3] +«]5 6] 718109]i0
s] 3 | als6f218]2F+ 15701
3 1000] 001] 000 | oor § ooo | oor [oot | ooo [ooo | ooo
4 | 001 [000 { 0ot [000 | oot § ooo | oo1 [o1o [ooo | 000
6 | 000 [oo1 000 001] 000 f oot |ooo] oo [o1rfooo
2 | 001 | 000 | oor [ooo [Tootr { oo T oot [oou Toto § oo

4. PERFORMANCE EVALUATION

For testing the efficiency of the proposed algorithm, a series
of experiments are performed to compare with the related
approach. In these experiments, we suppose these melodies
have been represented as a string of pitch values, then we use
the algorithm proposed to search the string queried from music
database.

In the experiment, queries are performed in a sample musical
collection and they have been represented as a string of pitch
values (see Figure 1), and then assume two patterns to retrieve.
For first pattern, we use 8=1,2,3,4,5 and y=1,2,3 respectively to
perform by &-approximate string matching 6, v)-
approximate string matching. Also for the second pattern, we
use 6=1,2,3,4,5 and y=1,2,3.4 respectively.

and

Here, we propose a variable named Precision-Matching (PM)
that is the exact rate of matching query. Thus, we use variant §,
y values to perform respectively, and then we compared the two
approximate string matching (see Figure 2) by PM. The
that
is more efficient

(8, y)-approximate string
than the single &-—

experimental result shows
matching algorithm
approximate string matching. Furthermore, their average PM is
compared, the result shows again that the (5, y)-

approximate string-matching algorithm has higher average PM

and

than §~approximate string matching (see Figure 3)

i

[S Appraimuse Mstxbing -~ (8, 1) Apprivimate Mutching |
100%

§

(M)
¥
(Avarage PM)
i

0% %

123436 7391IDBMISIELTIE
{ Exporinamet Timas)

& Apprasimmts Mocthing

(4, v) Appreviate
Masching

Figure 3. Comparison of
Average PM

Figure 2. Comparison of PM in
Two Approximate Matching

252

The two Pitch Value Pattern: {5,~-1,1,4,3,5,0} and {-1,-2-2}
The Pitch Value String is: {5,-1,1,4,3,5.0-1,-2.-25,-10,2,1,
4,-9,2,2,3,-5,-7,56,-1,1,4,3,9,0,-2-2,-1,1,4,-7,3,-1,-1,-1,2,-
4,-12,6,-1,1,4,3,3,0-1,-2,-24,-7,2,1,-1,-2-5,3,5,-1,1,4,.3,5
0-1,-2-24,-72,1-1,-2-5-2,-7,5,-1,1,4,3,5,0,.-1,-2,-25,-1
0,2,1,4,-9,2,2,3,-5,-7,5,-1,1,4,39.0,-2-2-3,-25,-10,2,1,4,-7,
2,1,4,-12,2,1}

Figure 1. Melodies of Schumann’s Traumerei

5. CONCLUSION

Music is an important type of media. It is necessary to

retrieve for music database, which is just many users’
requirement.

In this paper,
melodies represented as a string of pitch interval for musical

retrieval. Here, (8, y)-approximate string matching algorithm

we proposed an efficient algorithm using

refers to the process of looking for occurrences of a string over
a given alphabet within a set of sequences over the same
alphabet, The sequential pattern is the result of transcribing the
humming or sung query while the sequence set is the music
database.

Through analyzing the experimental results, we can know that
union of two approximate string matching, (8, y)-approximate
string matching algorithm is better and more efficient than single
8-approximate string matching algorithm.

In the future research, it is necessary to extend the proposed
algorithm to consider more general situation.

REFERENCE

[1] Ghias A., Logan H., C.D., “Query by Humming: Musical
Information Retrieval in an Audio Database,” In Proceedings
of Third ACM International Conference on Multimedia, 1995.

[2] E. Cambouropoulos, M. Crochemore, C.S. lliopoulos, L.
Mouchard, “Algorithms for Computing Approximate
Repetitions in Musical Sequences,” In Proceedings of the
10th Australasian workshop, 1999.

[3] E.C. and G. Widmer, (2000a) "Melodic Clustering: Movtivic
Analysis of Schumann’s Triumerei,” In Froceedings of the
I Journeyed Information Musicale, Bordeaux, France.

[4] Jia-Lian H., C.C. Liu, and Arbee L.P. Chen, “Efficient
Repeating Pattern Finding in Music Databases,” /n
Proceedings of ACM Seventh International Conference.

[5] Patrick A. V. HALL, “Approximate String Matching,” in
Computing Surveys, Vol. 12, No. 4, December 1980.

{61 Alexandra U., and Justin Z., “Melodic Matching Techniques
for Large Music Databases,” [n Proceedings of the
International ACM multimedia, 1999.

[7] A. L. Uitdenbogerd and J. Zobel, “Manipulation of Music For
Melody Matching,” /n Proceedings of the international ACM
multimedia, 1998.

