• 제목/요약/키워드: 음성 특징

검색결과 1,123건 처리시간 0.032초

음성인식 자동시험장치 개발 (Implementation of Automatic Test System for Voice Recognition)

  • 김희경
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.219-222
    • /
    • 1998
  • 음성인식시험은 다양한 사용자의 음성을 입력으로 음성인식을 수행하고 그 결과를 이용하여 시스팀의 성능을 평가하거나, 음성의 특징을 파악하기 위한 중요한 기능으로 음성인식 서비스의 질을 향상시키기 위한 필수적인 요소이다. 본 논문에서 제시하는 음성인식 자동시험장치는 음성인식의 결과를 DTMF 신호로 처리하도록 하여 사람의 개입 없이 빠르고 정확한 결과를 통해 인식율, 인식속도 등 인식기술과 관련된 중요한 정보를 얻을 수 있도록 하였다. 본 논문에서는 한국통신의 기업체 음성다이얼서비스의 음성인식시험을 중심으로 음성인식 자동시험장치의 구성 및 기능에 대해서 설명한다.

  • PDF

음성인식에서 특이 특징벡터의 제거에 대한 연구 (A Study on the Removal of Unusual Feature Vectors in Speech Recognition)

  • 이창영
    • 한국전자통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.561-567
    • /
    • 2013
  • 음성 인식을 위해 추출되는 특징벡터 중 일부는 드물게 나타나는 특이 패턴이다. 이들은 음성인식 시스템의 훈련에서 파라미터의 과도맞춤을 일으키며, 그 결과 새로운 입력 패턴의 인식을 저해하는 구조적 위험을 초래한다. 본 논문에서는 이러한 특이 패턴을 제거하는 하나의 방법으로서, 어느 크기 이상의 벡터를 제외시켜 음성인식 시스템의 훈련을 수행하는 방법에 대해 연구한다. 본 연구의 목적은 인식률을 저해시키지 않는 한도에서 가장 많은 특이 특징벡터를 제외시키는 것이다. 이를 위하여 우리는 하나의 절단 파라미터를 도입하고, 그 값의 변화가 FVQ(Fuzzy Vector Quantization)/HMM(Hidden Markov Model)을 사용한 화자독립 음성 인식에 미치는 영향을 조사하였다. 실험 결과, 인식률을 저하시키지 않는 특이 특징벡터의 수가 3%~6% 정도임을 확인하였다.

음성-영상 특징 추출 멀티모달 모델을 이용한 감정 인식 모델 개발 (Development of Emotion Recognition Model Using Audio-video Feature Extraction Multimodal Model)

  • 김종구;권장우
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.221-228
    • /
    • 2023
  • 감정으로 인해 생기는 신체적 정신적인 변화는 운전이나 학습 행동 등 다양한 행동에 영향을 미칠 수 있다. 따라서 이러한 감정을 인식하는 것은 운전 중 위험한 감정 인식 및 제어 등 다양한 산업에서 이용될 수 있기 때문에 매우 중요한 과업이다. 본 논문에는 서로 도메인이 다른 음성과 영상 데이터를 모두 이용하여 감정을 인식하는 멀티모달 모델을 구현하여 감정 인식 연구를 진행했다. 본 연구에서는 RAVDESS 데이터를 이용하여 영상 데이터에 음성을 추출한 뒤 2D-CNN을 이용한 모델을 통해 음성 데이터 특징을 추출하였으며 영상 데이터는 Slowfast feature extractor를 통해 영상 데이터 특징을 추출하였다. 감정 인식을 위한 제안된 멀티모달 모델에서 음성 데이터와 영상 데이터의 특징 벡터를 통합하여 감정 인식을 시도하였다. 또한 멀티모달 모델을 구현할 때 많이 쓰인 방법론인 각 모델의 결과 스코어를 합치는 방법, 투표하는 방법을 이용하여 멀티모달 모델을 구현하고 본 논문에서 제안하는 방법과 비교하여 각 모델의 성능을 확인하였다.

기저막 특성을 이용한 새로운 음성 특징 추출 및 성능 분석 (Performance of analysis and extraction of speech feature using characteristics of basilar membrane)

  • 이철희;신유식;정성환;김종교
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.153-156
    • /
    • 2000
  • 본 논문에서는 음성 인식률 향상을 위한 여러 가지방법들 중에서 음성특징 파라미터 추출 방법에 관한 한가지 방법을 제시하였다. 본 논문에서는 청각 특성을 기반으로 한 MFCC(met frequency cepstrum coef-ficients)와 성능 향상을 위한 방법으로 GFCC (gamma-tone filter frequency cepstrum coefficients)를 제시하고 음성 인식을 수행하여 성능을 분석하였다. MFCC에서 일반적으로 사용하는 임계 대역 필터로 삼각 필터(triangular filter) 대신 청각 구조의 기저막(basilar membrane)특성을 묘사한 gammatone 대역 통과 필터를 이용하여 특징 파라미터를 추출하였다. DTW 알고리즘으로 인식률을 분석한 결과 삼각 대역 필터를 이용한 것보다 gammatone 대역 통과 필터를 이용한 추출법이 약 2∼3%의 성능 향상을 보였다.

  • PDF

Perceiver 모델을 이용한 사용자 음성 구간 축약 (Voice Segment Reduction using Perceiver Model)

  • 최연웅;이재준;한현택;이해연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.491-493
    • /
    • 2022
  • 최근 스마트 기기에서 오디오 데이터를 이용하는 응용 기술들이 증가하면서, 오디오 데이터에서 관심 있는 구간을 찾아내는 기술의 필요성이 증가하고 있다. 본 논문에서는 Perceiver 모델을 활용하여 오디오 데이터에서 사람의 음성 구간을 검출하고 축약하는 방법을 제안한다. Perceiver 모델은 복잡한 입력 데이터에 대하여 Self-attention을 기반으로 특징을 추출하면서 이전의 특징을 다음 입력으로 다시 학습하는 특징을 갖고 있어서 연속적인 데이터인 오디오에 효율적으로 적용할 수 있다. 외부 및 자체에서 수집한 음성과 비음성 데이터셋에 대하여 실험을 진행하였고, 10초 단위 세그먼트에서 대해서 92.4%의 검출 정확도를 달성하였다.

얼굴과 음성 정보를 이용한 바이모달 사용자 인식 시스템 설계 및 구현 (Design and Implementation of a Bimodal User Recognition System using Face and Audio)

  • 김명훈;이지근;소인미;정성태
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.353-362
    • /
    • 2005
  • 최근 들어 바이모달 인식에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 음성 정보와 얼굴정보를 이용하여 바이모달 시스템을 구현하였다. 얼굴인식은 얼굴 검출과 얼굴 인식 두 부분으로 나누어서 실험을 하였다. 얼굴 검출 단계에서는 AdaBoost를 이용하여 얼굴 후보 영역을 검출 한 뒤 PCA를 통해 특징 벡터 계수를 줄였다. PCA를 통해 추출된 특징 벡터를 객체 분류 기법인 SVM을 이용하여 얼굴을 검출 및 인식하였다. 음성인식은 MFCC를 이용하여 음성 특징 추출을 하였으며 HMM을 이용하여 음성인식을 하였다. 인식결과, 단일 인식을 사용하는 것보다 얼굴과 음성을 같이 사용하였을 때 인식률의 향상을 가져왔고, 잡음 환경에서는 더욱 높은 성능을 나타냈었다.

  • PDF

음성인식에서 중복성의 저감에 대한 연구 (A Study on the Redundancy Reduction in Speech Recognition)

  • 이창영
    • 한국전자통신학회논문지
    • /
    • 제7권3호
    • /
    • pp.475-483
    • /
    • 2012
  • 음성 신호의 특성은 인접한 프레임에서 크게 변화하지 않는다. 따라서 비슷한 특징벡터들에 내재된 중복성을 줄이는 것이 바람직하다. 본 논문의 목적은 음성인식에 있어서 음성 특징벡터가 최소의 중복성과 최대의 유효한 정보를 갖는 조건을 찾는 것이다. 이를 이하여 우리는 하나의 감시 파라미터를 통하여 중복성 저감을 실현하고, 그 결과가 FVQ/HMM을 사용한 화자독립 음성인식에 미치는 영향을 조사하였다. 실험 결과, 인식률을 저하시키지 않고 특징벡터의 수를 30% 줄일 수 있음을 확인하였다.

음성 및 음성 관련 신호의 주파수 및 Quefrency 영역에서의 자기공분산 변화 (Variations of Autocovariances of Speech and its related Signals in time, frequency and quefrency domains)

  • 김선일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.340-343
    • /
    • 2011
  • 자동차 엔진 소음과 같은 비음성신호군과 음성신호군을 구별하기 위해서는 시간영역, 주파수 영역 등에서 다양한 특징값들의 차이를 이용할 수 있는데 두 신호군을 구별하기에 적절한 명확한 차이를 가진 특징값들로서 무엇을 사용하느냐 하는 것은 중요한 관건이다. 두 신호군을 구별해내기 위해 시간, 주파수, quefrency 영역에서의 자기공분산을 제시하고 이 값들의 변화를 관찰하였다. 시간 영역에서는 단순한 공분산을, 주파수 및 quefrency 영역에서는 128개 데이터를 한 세그먼트로 하여 전체 데이터를 나눈 후 각 세그먼트에 대한 FFT 및 quefrency를 구하였다. 각 계수에 대해 세그먼트 사이의 공분산의 평균값을 구하여 각 음성신호군에 따른 공분산의 변화를 관찰하였고 주파수 영역에서 구한 공분산에서 각 신호군의 특징적인 변화를 발견할 수 있었다.

  • PDF

심층신경망 기반의 음성인식을 위한 절충된 특징 정규화 방식 (Compromised feature normalization method for deep neural network based speech recognition)

  • 김민식;김형순
    • 말소리와 음성과학
    • /
    • 제12권3호
    • /
    • pp.65-71
    • /
    • 2020
  • 특징 정규화는 음성 특징 파라미터들의 통계적인 특성의 정규화를 통해 훈련 및 테스트 조건 사이의 환경 불일치의 영향을 감소시키는 방법으로서 기존의 Gaussian mixture model-hidden Markov model(GMM-HMM) 기반의 음성인식 시스템에서 우수한 성능개선을 입증한 바 있다. 하지만 심층신경망(deep neural network, DNN) 기반의 음성인식 시스템에서는 환경 불일치의 영향을 최소화 하는 것이 반드시 최고의 성능 개선으로 연결되지는 않는다. 본 논문에서는 이러한 현상의 원인을 과도한 특징 정규화로 인한 정보손실 때문이라 보고, 음향모델을 훈련 하는데 유용한 정보는 보존하면서 환경 불일치의 영향은 적절히 감소시켜 음성인식 성능을 최대화 하는 특징 정규화 방식이 있는 지 검토해보고자 한다. 이를 위해 평균 정규화(mean normalization, MN)와 평균 및 분산 정규화(mean and variance normalization, MVN)의 절충 방식인 평균 및 지수적 분산 정규화(mean and exponentiated variance normalization, MEVN)를 도입하여, 잡음 및 잔향 환경에서 분산에 대한 정규화의 정도에 따른 DNN 기반의 음성인식 시스템의 성능을 비교한다. 실험 결과, 성능 개선의 폭이 크지는 않으나 분산 정규화의 정도에 따라 MEVN이 MN과 MVN보다 성능이 우수함을 보여준다.

감정 인식을 위한 음성신호 비교 분석 (Comparison and Analysis of Speech Signals for Emotion Recognition)

  • 조동욱;김봉현;이세환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 춘계학술발표대회
    • /
    • pp.533-536
    • /
    • 2006
  • 본 논문에서는 음성 신호로부터 감정의 특징을 나타내는 요소를 찾아내는 것을 목표로 하고 있다. 일반적으로 감정을 인식할 수 있는 요소는 단어, 톤, 음성신호의 피치, 포만트, 그리고 발음 속도 및 음질 등이 있다. 음성을 기반으로 감정을 익히는 방법 중에서 현재 가장 많이 접근하고 있는 방법은 피치에 의한 방법이 있다. 사람의 경우는 주파수 같은 분석 요소보다는 톤과 단어, 빠르기, 음질로 감정을 받아들이게 되는 것이 자연스러운 방법이므로 이러한 요소들이 감정을 분류하는데 중요한 요소로 쓰일 수 있다. 따라서, 본 논문에서는 감정에 따른 음성의 특징을 추출하기 위해 사람의 감정 중에서 비교적 자주 쓰이는 평상, 기쁨, 화남, 슬픔에 관련된 4가지 감정을 비교 분석하였으며, 인간의 감정에 대한 음성의 특성을 분석한 결과, 강도와 스펙트럼에서 각각의 일관된 결과를 추출할 수 있었고, 이러한 결과에 대한 실험 과정과 최종 결과 및 근거를 제시하였다. 끝으로 실험에 의해 제안한 방법의 유용성을 입증하고자 한다.

  • PDF