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A Study on the Removal of Unusual Feature Vectors in Speech Recognition
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ABSTRACT

Some of the feature vectors for speech recognition are rare and unusual. These patterns lead to overfitting for the parameters of
the speech recognition system and, as a result, cause structural risks in the system that hinder the good performance in recognition.
In this paper, as a method of removing these unusual patterns, we try to exclude vectors whose norms are larger than a specified
cutoff value and then train the speech recognition system. The objective of this study is to exclude as many unusual feature
vectors under the condition of no significant degradation in the speech recognition error rate. For this purpose, we introduce a
cutoff parameter and investigate the resultant effect on the speaker-independent speech recognition of isolated words by using
FVQ(Fuzzy Vector Quantization)/HMM(Hidden Markov Model). Experimental results showed that roughly 3% ~6% of the feature
vectors might be considered as unusual, and therefore be excluded without deteriorating the speech recognition accuracy.
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I. Introduction interface. Speech input to a machine is about twice

as fast as information entry by a skilled typist [1].

As a method of communication between man and The need for and usefulness of speech-to-text
machine, speech recognition provides a very effective  transcription cannot be overestimated.
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The state of the art technology in the field of
speech recognition has reached such a mature level
that
applications. As a result, we are now living in a

of performance permits lots of daily
world of various devices which deploy the relevant
achievements [2-4].

Pattern classification proceeds largely in two
stages, one for feature vector extraction from input
signal and the other for pattern classification
(recognition) of the feature vectors through a
scoring procedure. As for the feature vectors in the

field of speech recognition, mel-frequency cepstral

coefficients (MFCC) were proven to be very
effective [5].
Since the wusual speech production shares

common features over people, most of the feature

vectors would agglomerate in the feature
hyperspace and be categorized as being normal.
in the

(carefully articulated and spoken in a relatively

Speech production benign circumstances
noise-free environment) corresponds to this class.
However, the situation is not always this case. For
talker
lip smacks,

example, during articulation, the often

produces sound artifacts, including
heavy breathing, and mouth clicks and pops [6].
Some people speak in heavy dialects. These sort of
speech tokens might be inferred not to produce
they lead to

unusual patterns and hence appear as rare and

common feature vectors. Instead,
unusual points in the feature vector space. These
vectors in turn cause overfitting of the system
parameters. Therefore, cleaning (or excluding) of
these rare, unusual, and spurious patterns is
advisable in the pattern -classification. If appr—
opriately removed, reduction in the computational
cost might be obtained as a byproduct.

In a general sense, structural risk minimization
(SRM) is an invaluable scheme in any kind of
machine learning. The SRM principle was first set
out in 1974 by Vapnik and Chervonenkis [7].

Commonly, in machine learning, a generalized model
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must be selected from a finite data set, with the
the model
becoming too strongly tailored to the particularities

consequent problem of overfitting -

and possible random noises of the training set and
thereby generalizing poorly to new data. The SRM
principle addresses this problem by balancing the
model’s complexity against its success at fitting
the training data.

In this paper, we consider a method of reducing
the structural risk of overfitting in the speech
recognition system by removing the rare and
unusual feature vectors. This prescription would
provide robustness against overfitting and redu-
ction in the computational cost.

The organization of this paper is as follows.
Section II describes experimental details in our
study. After expounding various results on the
efficacy of the proposed method in Section III,
concluding remarks are given in section IV.

Il. Experiment

Our experiments were performed on a set of
To see the
effect of vocabulary size, we divided the words into
three sets as in Table 1. The sets A and B are
disjoint each other and C is the union of them.

phone-balanced 300 Korean words.

Table 1. Three sets of speech data divided for
studying the effect of vocabulary size

Word Set Number of Words
A 100
B 200
C 300

Forty people including 20 male and 20 female
speakers participated in speech production. Speech
utterances of them were divided into three disjoint
groups as in Table 2.
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Table 2. Division of the 40 people’'s speech production
into three groups

Speaker Group Number of People

I 28
I 6
it 6

Twenty-eight people’s speech tokens of the
group I were used in generating codebook of size
512, whose centroids serve for fuzzy vector
quantization (FVQ) of all the speeches of 40 people.
HMM parameters were updated on each iteration of
training. In order to choose which values of
parameters to use in the final test of speech
recognition, some test speeches are necessary. The
parameters that yield the best performance on the
group II were stored and used for the test on the
group III to obtain the final performance of the
speaker-independent ~ speech  recognition system.
This prescription prevents the system from falling
too deep into the local minimum driven by the
of the group I and hence

training samples

becoming less robust against the speaker-
independence when applied to the group III [8].

The speech utterances were sampled at 16 kHz
512 data points

corresponding to 32 ms of time duration were

and quantized by 16 bits.

taken to be a speech frame for short-term analysis.
The next frame was obtained by shifting 256 data
points, thereby overlapping the adjacent frames by
50% in order not to lose any information contents
of coarticulation [9].

We discriminate MFCC feature

according as the Euclidean norm & = Il vl . For

vectors v

this purpose, we introduce a cutoff parameter «
that will serve as a criterion of separation between
"normal” patterns and “spurious” (unusual) ones.
We will consider a vector as spurious if its

where R

max

Euclidean norm is larger than o

max?

is the largest norm among all the feature vectors

under study. The supposedly spurious vectors lead
to overfitting and structural risk in the recognition
system and therefore will be discarded in the
processing. In our experiment, the cutoff parameter
o was varied from 04 to 1 in steps of 0.02. The
value of «a=0.7, for example, means that the

vectors of norms larger than 0.7R,, are treated

x
as spurious and hence discarded. It « is taken to
be small, then larger fraction of the feature vectors
are treated as spurious and hence only smaller
fraction of feature vectors would participate in
subsequent processing.

To each frame, Hanning window was applied
after pre-emphasis for spectral flattening. MFCC
feature vectors of order 13 were obtained and then
cepstral mean subtraction (CMS) [10] were applied
on utterance basis to endow robustness against
various adverse effects such as system depe-
ndence and noisy environment.

Codehooks of 512 clusters were generated by the
Linde-Buzo-Gray clustering algorithm on the
MFCC feature vectors obtained from the speeches
of the group I of Table 2, with spurious vectors
excluded according to the criterion explained above.
As for the field of speech recognition, neural
network approach might be employed [11-12] but
(HMM)

paper. The distances between the vectors and the

we used hidden Markov model in this
codebook centroids were calculated and sorted.
Appropriately normalized fuzzy membership values
were assigned to the nearest two clusters and a
train of two doublets (cluster index / fuzzy
membership) fed into HMM for speech recognition
processing.

For the HMM, a non-ergodic left-right (or
Bakis) model was adopted. The number of states
that is set separately for each class (word) was
made proportional to the average number of frames
of the training samples in that class [13]. Initial
estimation of HMM parameters A= (m,4,B) was
obtained by K-means segmental clustering after the
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first training. By this procedure, convergence of the
parameters became so fast that enough convergence
was reached mostly in several epochs of training
iterations.

Backward state transitions were prohibited by

suppressing the state transition probabilities a;

with ¢>7j to a very small value but skipping of
states was allowed. The last frame was restricted
to end up with the final state associated with the
word being scored within a tolerance of 3.
Parameter reestimation was performed by Baum-
Welch reestimation formula with scaled multiple
to avoid machine-errors
small

numbers. After each iteration, the event obser—

observation sequences

caused by repetitive multiplication of
vation probabilities b,(j) were boosted above a
small value.

Three features were monitored while training
the HMM parameters: (1) the recognition error
rate for the group II of Table 2, (2) the total
probability likelihood of events summed over all
the words of the training set according to the
and (3)
probabilities for the first state of the first word in

trained model, the event observation
the vocabulary list. Training was terminated when
the convergences for these three features were
thought to be enough. The parameter values of
A= (m,A,B)
group II

that give the best result for the

were stored and wused in speech
recognition test on the group III of Table 2.

We investigate the recognition error rate versus
the cutoff parameter «. If o« is above a certain
value, then it is expected that only spurious feature
vectors are excluded in the process and thus the
recognition error rate does not change significantly.
On the other hand, if « is decreased below a
certain value towards zero, then normal (usual) and
useful feature vectors begin to be excluded along
with the spurious vectors, and as a result, it
adversely affects and deteriorate the recognition
error rate. One objective of this paper is to
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determine the threshold value of « below which
the recognition error rate begins to decrease.

Ill. Results and Discussion

Figure 1 shows the distribution of MFCC feature
vectors in 2-dimensional subspace spanned by the
first and the second components of the MFCC
feature vectors. Most of the vectors agglomerate
together but some vectors reside on the outskirts
We see that
spurious

some of these
be Dbetter
excluded in the speech recognition processing.

of the cluster.

supposedly vectors might

30

20

10

Second Component

-20

-30

-40 -30 -20 -10 V] 10 20 30
First Component
Fig. 1 Distribution of MFCC feature vectors plotted in

2-dimensional subspace spanned by the first and the
second components.

Figure 2 shows the distribution of the feature
vectors according as their relative norms R/R,,,..
We see that most of the vectors have norms of
R<05R,,..

We now exclude the feature vectors whose

The values of «

were varied from 0.4 to 1 in steps of 0.02 and the

norms are larger than oR

max*®

resultant recognition error rates of speech

recognition were examined.
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Fig. 2 Distribution of the feature vectors according as
their relative norms.

Figure 3 shows the speech recognition result as
the cutoff parameter « 1is varied The general
behavior might be phrased in terms of two stages,
one for the approximately linear decrease in the
recognition error rate and the other for little change
(with minor fluctuations). For the values of a close
to zero, only a small fraction of useful information
is included in the process and the recognition error
rate becomes small inevitably. As « is increased,
more useful information is included in the process
and, as a result, the performance becomes better.
Above a certain threshold value, however, the
decrease in the recognition error rate is improved
meaning that the additional
vectors by increase of o are actually spurious.

only insignificantly,
This feature were found to pervade all the cases
under our study.

By two separate curve-fittings on the two
characteristic regions, the optimal cutoff parameter
was located as the abscissa coordinate of the
intersection of the two fitted lines. Table 3 shows
the summary of the results. We see that the
optimal value of « is around a*=0.5~0.6. The
rightmost column is the ratio of the number of
feature vectors N(a)/N(1) for optimal values of
a, ie, a* N(1) means the number of all the
feature vectors with no vectors excluded.
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Fig. 3 Recognition error rate versus the cutoff
parameter « for 200 words.

Table 3. The optimal cutoff parameter o* and the
ratio of the number of feature vectors N(a*)/N(1)
included in the speech recognition.

# of Optimal Cutoff
N(a*)/N(1
Words Parameter a* (*)/ V(1)
100 052 ~0.94
200 0.58 =097
300 0.56 ~0.96

Figure 4 shows the ratio of the number of
feature vectors N(a)/N(1) for the set C of Table
1 (words 300). This result is almost the same in
the cases of the set B and C of Table 1. As « is
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Fig. 4 The ratio of the number of feature vectors
Na)/N(1) for the set C of Table 1 (words 300)
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less vectors are excluded and more
included. The vertical dotted line
denotes the location of the optimal value of «

increased,
vectors are

above which no significant change occurs in the
speech recognition performance.

For 300 words, as an example, the optimum
value of o was estimated to be 0.56, above which
the recognition error rate does not show significant
change since additionally included feature vectors
are spurious. For this optimum value of «, the
ratio of the number of feature vectors is
N(0.56)/N(1) =0.96. This means that we might
decrease 4% of the number of feature vectors
without deteriorating the speech recognition per—
formance.

IV. Conclusion

In this paper, an experimental method of
removing unusual feature vectors was studied by
introduction of a cutoff parameter. The aim is to
exclude the unusual spurious feature vectors that
would not give rise to signifiant adverse effect on
the speech recognition performance. We introduced
a cutoff parameter o and discarded vectors whose

norms are larger than aR

axs Where R, .. is the
largest norm.

The effect of excluding the unusual feature
vectors might be stated in two respects. One is the
structural

possihility of overfitting onto the training feature

risk minimization by reducing the
vectors. The other is reduction in the calculational
cost.

Speech recognition performance showed largely
two stages of changes as the value of the cutoff
parameter is increased from 04 to 1 in steps of
linear decrease in

0.02: one 1is the roughly

recognition error rate and the other is minor
fluctuation for « above a certain value. Optimal

value of the cutoff parameter was located by the
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point of intersection for curve-fittings in the two
regions.

The optimal values of cutoff parameter were
estimated to be around 05~06 and the corr-
esponding number of feature vectors for processing
were found to be reduced by around 3% ~6%. The
dependence of the results on the vocabulary size

was minor.
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