• Title/Summary/Keyword: 음성감정인식

Search Result 142, Processing Time 0.032 seconds

Utilizing Korean Ending Boundary Tones for Accurately Recognizing Emotions in Utterances (발화 내 감정의 정밀한 인식을 위한 한국어 문미억양의 활용)

  • Jang In-Chang;Lee Tae-Seung;Park Mikyoung;Kim Tae-Soo;Jang Dong-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.505-511
    • /
    • 2005
  • Autonomic machines interacting with human should have capability to perceive the states of emotion and attitude through implicit messages for obtaining voluntary cooperation from their clients. Voice is the easiest and most natural way to exchange human messages. The automatic systems capable to understanding the states of emotion and attitude have utilized features based on pitch and energy of uttered sentences. Performance of the existing emotion recognition systems can be further improved withthe support of linguistic knowledge that specific tonal section in a sentence is related with the states of emotion and attitude. In this paper, we attempt to improve recognition rate of emotion by adopting such linguistic knowledge for Korean ending boundary tones into anautomatic system implemented using pitch-related features and multilayer perceptrons. From the results of an experiment over a Korean emotional speech database, the improvement of $4\%$ is confirmed.

Development of a Depression Prevention Platform using Multi-modal Emotion Recognition AI Technology (멀티모달 감정 인식 AI 기술을 이용한 우울증 예방 플랫폼 구축)

  • HyunBeen Jang;UiHyun Cho;SuYeon Kwon;Sun Min Lim;Selin Cho;JeongEun Nah
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.916-917
    • /
    • 2023
  • 본 연구는 사용자의 음성 패턴 분석과 텍스트 분류를 중심으로 이루어지는 한국어 감정 인식 작업을 개선하기 위해 Macaron Net 텍스트 모델의 결과와 MFCC 음성 모델의 결과 가중치 합을 분류하여 최종 감정을 판단하는 기존 82.9%였던 정확도를 텍스트 모델 기준 87.0%, Multi-Modal 모델 기준 88.0%로 개선한 모델을 제안한다. 해당 모델을 우울증 예방 플랫폼의 핵심 모델에 탑재하여 covid-19 팬데믹 이후 사회의 문제점으로 부상한 우울증 문제 해소에 기여 하고자 한다.

Discriminative Feature Vector Selection for Emotion Classification Based on Speech. (음성신호기반의 감정분석을 위한 특징벡터 선택)

  • Choi, Ha-Na;Byun, Sung-Woo;Lee, Seok-Pil
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1391-1392
    • /
    • 2015
  • 최근 컴퓨터 기술이 발전하고, 컴퓨터의 형태가 다양해지면서 여러 wearable device들이 생겨났다. 이에 따라 휴먼 인터페이스 기술에서 사람의 감정정보가 중요해졌고, 감정인식에 대한 연구들이 많이 진행 되어 왔다. 본 논문에서는 감정분석에 적합한 특징벡터를 제시하고자 한다. 이를 위해 사람의 감정을 보통, 기쁨, 슬픔, 화남 4가지로 분류하고 방송매체를 통하여 잡음 없이 녹음하였다. 특징벡터는 MFCC, LPC, LPCC 3가지를 추출하였고 Bhattacharyya거리 측정을 통하여 분리도를 비교하였다.

  • PDF

Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템)

  • Yeom, Hong-Gi;Joo, Jong-Tae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • As they have more and more intelligence robots or computers these days, so the interaction between intelligence robot(computer) - human is getting more and more important also the emotion recognition and expression are indispensable for interaction between intelligence robot(computer) - human. In this paper, firstly we extract emotional features at speech signal and facial image. Secondly we apply both BL(Bayesian Learning) and PCA(Principal Component Analysis), lastly we classify five emotions patterns(normal, happy, anger, surprise and sad) also, we experiment with decision fusion and feature fusion to enhance emotion recognition rate. The decision fusion method experiment on emotion recognition that result values of each recognition system apply Fuzzy membership function and the feature fusion method selects superior features through SFS(Sequential Forward Selection) method and superior features are applied to Neural Networks based on MLP(Multi Layer Perceptron) for classifying five emotions patterns. and recognized result apply to 2D facial shape for express emotion.

Study of Emotion in Speech (감정변화에 따른 음성정보 분석에 관한 연구)

  • 장인창;박미경;김태수;박면웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1123-1126
    • /
    • 2004
  • Recognizing emotion in speech is required lots of spoken language corpus not only at the different emotional statues, but also in individual languages. In this paper, we focused on the changes speech signals in different emotions. We compared the features of speech information like formant and pitch according to the 4 emotions (normal, happiness, sadness, anger). In Korean, pitch data on monophthongs changed in each emotion. Therefore we suggested the suitable analysis techniques using these features to recognize emotions in Korean.

  • PDF

Emotion Recognition Using Output Data of Image and Speech (영상과 음성의 출력 데이터를 이용한 감성 인식)

  • Joo, Young-Hoon;Oh, Jae-Heung;Park, Chang-Hyun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.275-280
    • /
    • 2003
  • In this paper, we propose a method for recognizing the human s emotion using output data of image and speech. The proposed method is based on the recognition rate of image and speech. In case that we use one data of image or speech, it is hard to produce the correct result by wrong recognition. To solve this problem, we propose the new method that can reduce the result of the wrong recognition by multiplying the emotion status with the higher recognition rate by the higher weight value. To experiment the proposed method, we suggest the simple recognizing method by using image and speech. Finally, we have shown the potentialities through the expriment.

A Design of Artificial Emotion Model (인공 감정 모델의 설계)

  • Lee, In-Geun;Seo, Seok-Tae;Jeong, Hye-Cheon;Gwon, Sun-Hak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.58-62
    • /
    • 2007
  • 인간이 생성한 음성, 표정 영상, 문장 등으로부터 인간의 감정 상태를 인식하는 연구와 함께, 인간의 감정을 모방하여 다양한 외부 자극으로 감정을 생성하는 인공 감정(Artificial Emotion)에 관한 연구가 이루어지고 있다. 그러나 기존의 인공 감정 연구는 외부 감정 자극에 대한 감정 변화 상태를 선형적, 지수적으로 변화시킴으로써 감정 상태가 급격하게 변하는 형태를 보인다. 본 논문에서는 외부 감정 자극의 강도와 빈도뿐만 아니라 자극의 반복 주기를 감정 상태에 반영하고, 시간에 따른 감정의 변화를 Sigmoid 곡선 형태로 표현하는 감정 생성 모델을 제안한다. 그리고 기존의 감정 자극에 대한 회상(recollection)을 통해 외부 감정 자극이 없는 상황에서도 감정을 생성할 수 있는 인공 감정 시스템을 제안한다.

  • PDF

Efficient Emotion Classification Method Based on Multimodal Approach Using Limited Speech and Text Data (적은 양의 음성 및 텍스트 데이터를 활용한 멀티 모달 기반의 효율적인 감정 분류 기법)

  • Mirr Shin;Youhyun Shin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.174-180
    • /
    • 2024
  • In this paper, we explore an emotion classification method through multimodal learning utilizing wav2vec 2.0 and KcELECTRA models. It is known that multimodal learning, which leverages both speech and text data, can significantly enhance emotion classification performance compared to methods that solely rely on speech data. Our study conducts a comparative analysis of BERT and its derivative models, known for their superior performance in the field of natural language processing, to select the optimal model for effective feature extraction from text data for use as the text processing model. The results confirm that the KcELECTRA model exhibits outstanding performance in emotion classification tasks. Furthermore, experiments using datasets made available by AI-Hub demonstrate that the inclusion of text data enables achieving superior performance with less data than when using speech data alone. The experiments show that the use of the KcELECTRA model achieved the highest accuracy of 96.57%. This indicates that multimodal learning can offer meaningful performance improvements in complex natural language processing tasks such as emotion classification.

Design of Intelligent Emotion Recognition Model (지능형 감정인식 모델설계)

  • 김이곤;김서영;하종필
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.46-50
    • /
    • 2001
  • Voice is one of the most efficient communication media and it includes several kinds of factors about speaker, context emotion and so on. Human emotion is expressed in the speech, the gesture, the physiological phenomena (the breath, the beating of the pulse, etc). In this paper, the method to have cognizance of emotion from anyone's voice signals is presented and simulated by using neuro-fuzzy model.

  • PDF

A Design of Active Robot System for Speech Therapy (능동적인 언어치료 로봇시스템 설계)

  • Yun, Jae-Min;Jee, Min-Sung;Shin, Dong-chun;Ko, Yeon-Jeong
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.687-688
    • /
    • 2022
  • 기존 언어치료는 언어발달장애 아동과 언어치료사간의 대면 방식으로 이루어지며, 이때 각종 언어치료도구가 사용된다. 본 시스템은 언어발달장애 아동과 로봇 간의 언어치료를 위해서, 센서를 통한 아동 이동 접근 확인, 아동 얼굴 검출, 아동 얼굴 인식, 아동 얼굴 감정 인식, 아동 얼굴 추적, 감정 돌봄 대화 출력, 언어치료 콘텐츠 표시, 음성대화를 통한 언어치료 수행이 어떻게 적용되는지 개념을 설명하고자 한다.