• Title/Summary/Keyword: 은나노입자

Search Result 48, Processing Time 0.027 seconds

Overview of Salt Effect of Fertilizer on Nano-Silver Application in Soil (토양 내 은나노 처리 시 비료에 의한 염류 효과)

  • Yang, J.E.;Kim, S.C.;Lee, Y.S.;Kim, D.G.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.1-3
    • /
    • 2009
  • Silver nanoparticles have been used in agricultural practice because of their biocide effect. However, limited information is available for the effect of silver nanoparticles on soil quality. Therefore, the main purpose of this study was to evaluate effect of silver nanoparticle application on soil especially when fertilizer is applied. To simulate potassium fertilizer, potassium chloride was mixed with silver nanoparticles in soil. Concentration of silver and chloride was measured and result showed that concentration of both compounds was decreased at the range of $3.4mg\;kg^{-1}$ and 78-84% respectively after treatment. In addition, analysis of microbial population after treatment showed that microbial population was increased when silver nanoparticles and KCl were mixed. Those results indicated that application of fertilizer has impact on biocide effect of silver nanoparticles in soil.

Improvement of Thermal and Electrical Conductivity of Epoxy/boron Nitride/silver Nanoparticle Composite (열전도도 및 전기전도도가 향상된 에폭시/보론나이트라이드/은나노입자 복합체의 제조)

  • Kim, Seungyong;Lim, Soonho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.426-429
    • /
    • 2017
  • In this study, we investigated the effect of BN (boron nitride) on the thermal and the electrical conductivity of composites. In case of epoxy/BN composites, the thermal conductivity was increased as the BN contents were increased. Epoxy/AgNP (Ag nanoparticle) nanocomposites exhibited a slight change of thermal conductivity and showed a electrical percolation threshold at 20 vol% of Ag nanoparticles. At the fixed Ag nanoparticle content below the electrical percolation threshold, increasing the amount of BN enhanced the electrical conductivity as well as thermal conductivity for the epoxy/AgNP/BN composites.

Adsorption and antibacterial property of impregnated activated carbon fiber (첨착 활성탄소섬유의 흡착 및 항균특성)

  • You, Seung-Han;Kim, Jung-Su;Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5370-5375
    • /
    • 2011
  • To introduce the antibacterial activity, ACF(activated carbon fiber) was impregnated by nano-sized Ag, Mn, and phosphoric acid. It was observed by the SEM analysis that Ag, Mn and phosphoric acid were properly impregnated at the ACF. The impregnated ACF showed lower adsorption performance than the pure ACF. It is found that ACFs impregnated by nano-sized Ag or phosphoric acid have a good antibacterial activity against bacillus cereus and salmonella entaritidis. but in the case of ACF impregnated with Mn, it have not any antibacterial effect on the bacillus cereus and salmonella entaritidis.

Antimicrobial Chitosan-silver Nanocomposite Film Prepared by Green Synthesis for Food Packaging (녹색합성법에 기인한 식품포장용 키토산-은나노 항균 복합필름의 개발)

  • Kyung, Gyusun;Ko, Seonghyuk
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.347-351
    • /
    • 2014
  • We studied the green synthesis and antibacterial activity of chitosan-silver (Ag) nanocomposite films for application in food packaging. Green synthesis of Ag nanoparticles (AgNPs) was achieved by a chemical reaction involving a mixture of chitosan-silver nitrate ($AgNO_3$) in an autoclave at 0.1 MPa, $121^{\circ}C$, for 15-120 s. The formation of AgNPs in chitosan was confirmed by both UV-Visible spectrophotometry and transmission electron microscopy (TEM) and the effects of chitosan-$AgNO_3$ concentration and reaction time on the synthesis of AgNPs in chitosan were examined. The resulting chitosan-Ag composite films were characterized by various analytical techniques and their antibacterial activity was evaluated based on the formation of halo zones around films, indicating inhibition of the growth of Escherichia coli. A fourier-transform infrared (FTIR) spectroscopy analysis showed that free amino groups in chitosan acted as effective reductants and AgNP stabilizers. The composite films exhibited enhanced antibacterial activity with increasing Ag content on the surface of as-prepared composite films.

Fractional efficiency of Nanomaterials for the High efficiency respiratory filters (고효율 호흡보호구의 나노물질 입경별 제거 효율)

  • Lee, Gwang-Jae;Ji, Jun-Ho;Kim, Won-Geun;Yook, Se-Jin;Kim, Jong-Kyo;Kim, Jung-Ho
    • Particle and aerosol research
    • /
    • v.12 no.3
    • /
    • pp.95-102
    • /
    • 2016
  • Controlling exposures to occupational hazards is important for protecting workers. Certified facepiece respirators are recommended when engineering controls do not adequately prevent exposures to airborne nanomaterials. The objective of this study is to carry out the experimental performance test to investigate the fractional efficiencies of the filter media for two grades of facepiece respirators. Experimental performance evaluations were carried out for the test NaCl particles and silver nanoparticles. For media of respirator filter, the penetration of NaCl particles was less than 5% and the most penetrating particle size occurred at about 40 nm. For silver nanoparticles, the most penetrating particle size was about 20nm with higher efficiency than those of NaCl particles. Charge characteristics of airborne nanoparticles is important because the media of respirator filter is made by the electret filter media.

업체탐방 - (주)한국비앤씨

  • Choe, In-Hwan
    • KOREAN POULTRY JOURNAL
    • /
    • v.49 no.4
    • /
    • pp.128-131
    • /
    • 2017
  • 은(Silver)은 예부터 살균효과를 갖는 것으로 매우 잘 알려 왔다. 하지만 은 자체로는 이러한 효능을 극대화할 수 없어 은을 나노미터 단위의 미세한 입자를 안정적으로 만들어야 한다. 이것이 바로 은나노 기술의 핵심이다. (주)한국비앤씨(대표이사 김경채, 이하 한국비앤씨)는 미국 Ferro社(사)의 선진 기술을 도입하여 타 회사와 차별화된 은나노 기술력으로 부작용과 내성이 없는 은나노 향균제품으로 닭의 면역력 강화에 집중하고 있다. 이번호에는 한국비앤씨를 소개코자 한다.

Antibacterial Activity of Silver-nanoparticles Against Staphylococcus aureus and Escherichia coli (황색 포도상구균과 대장균에 대한 은나노 입자의 항균활성)

  • Kim, Soo-Hwan;Lee, Hyeong-Seon;Ryu, Deok-Seon;Choi, Soo-Jae;Lee, Dong-Seok
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.77-85
    • /
    • 2011
  • The antibacterial activities of silver nanoparticles (Ag-NPs) were studied with respect to Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli by observing the bacterial cells treated or not with Ag-NPs by FE-SEM as well as measuring the growth curves, formation of bactericidal ROS, protein leakage, and lactate dehydrogenase activity involved in the respiratory chain. Bacterial cells were treated with Ag-NPs powder, and the growth rates were investigated under varying concentrations of Ag-NPs, incubation times, incubation temperatures, and pHs. As a result, S. aureus and E. coli were shown to be substantially inhibited by Ag-NPs, and the antibacterial activity of Ag-NPs did not fluctuate with temperature or pH. These results suggest that Ag-NPs could be used as an effective antibacterial material.

Toxicity of Silver Nanoparticles and Application of Natural Products on Fabric and Filters as an Alternative (은나노 입자의 독성 메커니즘 및 천연물을 활용한 은나노 대체 항균 소재 연구)

  • Karadeniz, Fatih;Kim, Han Seong
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.864-873
    • /
    • 2018
  • There has been increasing attention and research in various nanoparticle applications. Nanoparticles have been used for a variety of purposes in different departments including but not limited to cosmetics, food, machinery, and chemical. A highly sought-after field to use nanoparticles, especially natural or artificial silver nanoparticles (SNPs), is the utilization of their significant antimicrobial properties in daily items such as fabrics, indoor air filters, and, water filtration units where abundant bacterial and fungal growth are inevitable. These applications of SNPs, however, have enabled continuous human exposure and hence paved the way for potential SNP toxicity depending on exposure method and particle size. This potential toxicity has led to researches on safer antimicrobial solutions to be utilized in textile and filtration. In this context, products of natural origin have gained expanding interest due to their eco-friendly, cost-effective, and biologically safe properties along their promising antibacterial and antifungal activities. Natural product-applied fabrics and filters have been shown to be comparable to those that are SNP-treated in terms of ease production, material durability, and antimicrobial efficiency. This article summarizes and assesses the current state of in vitro and in vitro toxicity of SNPs and discusses the potential of natural products as an alternative.

Fabrication Process of Natural Silk Including Ag Nano-particle (은나노 입자가 함유된 천연실크 제조 방법)

  • Jung, I-Yeon;Kang, Pil-Don;Kim, Kee-Young;Ryu, Kang-Sun;Sohn, Bong-Hee;Kim, Yong-Soon;Kim, Mi-Ja;Lee, Kwang-Gill;Chai, Chang-Keun;Koh, Seok-Keun
    • Journal of Sericultural and Entomological Science
    • /
    • v.49 no.1
    • /
    • pp.24-27
    • /
    • 2007
  • Silkworm fed on the mulberry leaf mixed with silver nanoparticle to produce silver-nanoparticle embedded cocoon. Comparative analysis of silver content of cocoon shell, percentage of pupation and percentage of cocoon-shell weight showed that the optimum concentration and the feeding period of mulberry leaf mixed with silver nanoparticle were 500 ppm and the period from 3 day 5 instar to mounting of silkworm. The silver content of cocoon was observed variously by silkworm breedings. C212 variety makes pale yellow cocoon with the highest silver content(69%). Using the scanning electron microscope, we showed that the size of silver nanoparticles in silk was observed from 26.98 to 99.81nm. Silver-nanoparticle embedded silk is expected to use as high valuable application owing to the different functional properties including antibiotic characteristics and mechanical and electronic properties. The applicable fields expected is antistatic and/or electronic products with biological degradable natural materials.