• Title/Summary/Keyword: 융합심박변이도

Search Result 11, Processing Time 0.026 seconds

Sports convergence Analysis of Sports injuries and Heart Rate Variability in National Female Judo Athletes (국가대표 여자 유도선수들의 스포츠 손상과 심박변이도와의 스포츠 융합 분석)

  • Kim, Hyun-Chul;Park, Ki-Jun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.4
    • /
    • pp.49-54
    • /
    • 2020
  • The purpose of this study was to investigate the correlation between sports incidence and heart rate variability in nationa lfemale judo athletes. Participants measured heart rate variability using the Autonomic Nervous System(SA-6000). Based on the average incidence of injury, sports injury incidence was classified into upper and lower groups. In addition, Pearson's Product Moment Correlation was performed to examine the correlation between the independent T-test, the number of sports injuries, and the heart rate variability. Heart rate variability was significantly different in total power and low frequency, and there was also significant difference in otal power and low frequency in the correlation analysis of heart rate variability according to the number of sports injuries. These data are expected to be useful as basic data for developing prevention injury programs.

A Convergence HRV Analysis for Significant Factor Diagnosing in Adult Patients with Sleep Apnea (수면무호흡을 가진 성인환자들의 주요인자 진단을 위한 융합 심박변이도 해석)

  • Kim, Min-Soo;Jeong, Jong-Hyeog;Cho, Young-Chang
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.387-392
    • /
    • 2018
  • The aim of this study was to determine the statistical significance of heart rate variability(HRV) between sleep stages, Apnea-hypopnea index(AHI) and age in patients with obstructive sleep apnea(OSA). This study evaluated the main parameters of HRV over time domain and frequency domain in 40 patients with sleep apnea. The non-REM(sleep stage) was statistically validated by comparing the AHI degree of the three groups(mild, moderate, severe) of sleep apnea patients. The NN50(p=0.043), pNN50(p=0.044), VLF peak(p=0.022), LF/HF(p=0.028) were statistically significant in the R-R interval of patients with sleep apnea from the control group (p<0.05). The LF / HF (p = 0.045) and HF power (p = 0.0395) parameters between the non-RAM sleep (sleep 2 phase) and REM sleep in patients with sleep apnea were statistically significant in the control group(p<0.05). We may be able to provide a basis for understanding the correlation among AHI, sleep stage and age and heart rate variability in patients with obstructive sleep apnea.

Convergence Implementing Emotion Prediction Neural Network Based on Heart Rate Variability (HRV) (심박변이도를 이용한 인공신경망 기반 감정예측 모형에 관한 융복합 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.33-41
    • /
    • 2018
  • The purpose of this study is to develop more accurate and robust emotion prediction neural network (EPNN) model by combining heart rate variability (HRV) and neural network. For the sake of improving the prediction performance more reliably, the proposed EPNN model is based on various types of activation functions like hyperbolic tangent, linear, and Gaussian functions, all of which are embedded in hidden nodes to improve its performance. In order to verify the validity of the proposed EPNN model, a number of HRV metrics were calculated from 20 valid and qualified participants whose emotions were induced by using money game. To add more rigor to the experiment, the participants' valence and arousal were checked and used as output node of the EPNN. The experiment results reveal that the F-Measure for Valence and Arousal is 80% and 95%, respectively, proving that the EPNN yields very robust and well-balanced performance. The EPNN performance was compared with competing models like neural network, logistic regression, support vector machine, and random forest. The EPNN was more accurate and reliable than those of the competing models. The results of this study can be effectively applied to many types of wearable computing devices when ubiquitous digital health environment becomes feasible and permeating into our everyday lives.

The study of blood glucose level prediction model using ballistocardiogram and artificial intelligence (심탄도와 인공지능을 이용한 혈당수치 예측모델 연구)

  • Choi, Sang-Ki;Park, Cheol-Gu
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.257-269
    • /
    • 2021
  • The purpose of this study is to collect biosignal data in a non-invasive and non-restrictive manner using a BCG (Ballistocardiogram) sensor, and utilize artificial intelligence machine learning algorithms in ICT and high-performance computing environments. And it is to present and study a method for developing and validating a data-based blood glucose prediction model. In the blood glucose level prediction model, the input nodes in the MLP architecture are data of heart rate, respiration rate, stroke volume, heart rate variability, SDNN, RMSSD, PNN50, age, and gender, and the hidden layer 7 were used. As a result of the experiment, the average MSE, MAE, and RMSE values of the learning data tested 5 times were 0.5226, 0.6328, and 0.7692, respectively, and the average values of the validation data were 0.5408, 0.6776, and 0.7968, respectively, and the coefficient of determination (R2) was 0.9997. If research to standardize a model for predicting blood sugar levels based on data and to verify data set collection and prediction accuracy continues, it is expected that it can be used for non-invasive blood sugar level management.

A Convergence study on Interpersonal Relationship Skills and Job Stress among Social Welfare Residential Facility Worker: Focusing on Intervention through TSL program (사회복지생활시설 종사자의 대인관계 기술과 직무스트레스에 관한 융합 연구: TSL 프로그램 개입을 통한 의생명과학적 효과 검증)

  • Choi, Jang Won
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.227-236
    • /
    • 2019
  • The purpose of this study is to examine the effect of TSJ-JSM (Job Stress Management) program, which was developed for improving interpersonal relationship and mitigating job stress among social workers through convergence methods with biomedical and social scientific measurements. In order to achieve the purpose, utilizing quasi-experimental design with non-equivalent control group design was applied. Participants were recruited among social welfare residential facility workers with volunteer intention, and 21 participants divided into three groups randomly: experimental, comparison, and control groups consisted of 7 workers respectively. TSL-JSM program consisted of 12 sessions were implemented to experimental group, on the other hands, other employee assistant program with 12 stages was applied to comparison group. Data analysis for verification of TSL-JSM program was conducted with SPSS 25.0. Both social scientific and biomedical scientific measures show that TSL-JSM program has most strong effects on enhancing interpersonal relationship skills and allaying level of job stress by levels of increased HRV SDNN and decreased Corisol.

Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV) (심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.239-247
    • /
    • 2019
  • An accurate prediction of emotion is a very important issue for the sake of patient-centered medical device development and emotion-related psychology fields. Although there have been many studies on emotion prediction, no studies have applied the heart rate variability and neuro-fuzzy approach to emotion prediction. We propose ANFEP(Adaptive Neuro Fuzzy System for Emotion Prediction) HRV. The ANFEP bases its core functions on an ANFIS(Adaptive Neuro-Fuzzy Inference System) which integrates neural networks with fuzzy systems as a vehicle for training predictive models. To prove the proposed model, 50 participants were invited to join the experiment and Heart rate variability was obtained and used to input the ANFEP model. The ANFEP model with STDRR and RMSSD as inputs and two membership functions per input variable showed the best results. The result out of applying the ANFEP to the HRV metrics proved to be significantly robust when compared with benchmarking methods like linear regression, support vector regression, neural network, and random forest. The results show that reliable prediction of emotion is possible with less input and it is necessary to develop a more accurate and reliable emotion recognition system.

Study on Heart Rate Variability and PSD Analysis of PPG Data for Emotion Recognition (감정 인식을 위한 PPG 데이터의 심박변이도 및 PSD 분석)

  • Choi, Jin-young;Kim, Hyung-shin
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.103-112
    • /
    • 2018
  • In this paper, we propose a method of recognizing emotions using PPG sensor which measures blood flow according to emotion. From the existing PPG signal, we use a method of determining positive emotions and negative emotions in the frequency domain through PSD (Power Spectrum Density). Based on James R. Russell's two-dimensional prototype model, we classify emotions as joy, sadness, irritability, and calmness and examine their association with the magnitude of energy in the frequency domain. It is significant that this study used the same PPG sensor used in wearable devices to measure the top four kinds of emotions in the frequency domain through image experiments. Through the questionnaire, the accuracy, the immersion level according to the individual, the emotional change, and the biofeedback for the image were collected. The proposed method is expected to be various development such as commercial application service using PPG and mobile application prediction service by merging with context information of existing smart phone.

The study of blood glucose level prediction using photoplethysmography and machine learning (PPG와 기계학습을 활용한 혈당수치 예측 연구)

  • Cheol-Gu, Park;Sang-Ki, Choi
    • Journal of Digital Policy
    • /
    • v.1 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • The paper is a study to develop and verify a blood glucose level prediction model based on biosignals obtained from photoplethysmography (PPG) sensors, ICT technology and data. Blood glucose prediction used the MLP architecture of machine learning. The input layer of the machine learning model consists of 10 input nodes and 5 hidden layers: heart rate, heart rate variability, age, gender, VLF, LF, HF, SDNN, RMSSD, and PNN50. The results of the predictive model are MSE=0.0724, MAE=1.1022 and RMSE=1.0285, and the coefficient of determination (R2) is 0.9985. A blood glucose prediction model using bio-signal data collected from digital devices and machine learning was established and verified. If research to standardize and increase accuracy of machine learning datasets for various digital devices continues, it could be an alternative method for individual blood glucose management.

Blood glucose prediction using PPG and DNN in dogs - a pilot study (개의 PPG와 DNN를 이용한 혈당 예측 - 선행연구)

  • Cheol-Gu Park;Sang-Ki Choi
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.25-32
    • /
    • 2023
  • This paper is a study to develop a deep neural network (DNN) blood glucose prediction model based on heart rate (HR) and heart rate variability (HRV) data measured by PPG-based sensors. MLP deep learning consists of an input layer, a hidden layer, and an output layer with 11 independent variables. The learning results of the blood glucose prediction model are MAE=0.3781, MSE=0.8518, and RMSE=0.9229, and the coefficient of determination (R2) is 0.9994. The study was able to verify the feasibility of glycemic control using non-blood vital signs using PPG-based digital devices. In conclusion, a standardized method of acquiring and interpreting PPG-based vital signs, a large data set for deep learning, and a study to demonstrate the accuracy of the method may provide convenience and an alternative method for blood glucose management in dogs.

Analytical Evaluation of PPG Blood Glucose Monitoring System - researcher clinical trial (PPG 혈당 모니터링 시스템의 분석적 평가 - 연구자 임상)

  • Cheol-Gu Park;Sang-Ki Choi;Seong-Geun Jo;Kwon-Min Kim
    • Journal of Digital Convergence
    • /
    • v.21 no.3
    • /
    • pp.33-39
    • /
    • 2023
  • This study is a performance evaluation of a blood sugar monitoring system that combines a PPG sensor, which is an evaluation device for blood glucose monitoring, and a DNN algorithm when monitoring capillary blood glucose. The study is a researcher-led clinical trial conducted on participants from September 2023 to November 2023. PPG-BGMS compared predicted blood sugar levels for evaluation using 1-minute heart rate and heart rate variability information and the DNN prediction algorithm with capillary blood glucose levels measured with a blood glucose meter of the standard personal blood sugar management system. Of the 100 participants, 50 had type 2 diabetes (T2DM), and the average age was 67 years (range, 28 to 89 years). It was found that 100% of the predicted blood sugar level of PPG-BGMS was distributed in the A+B area of the Clarke error grid and Parker(Consensus) error grid. The MARD value of PPG-BGMS predicted blood glucose is 5.3 ± 4.0%. Consequentially, the non-blood-based PPG-BGMS was found to be non-inferior to the instantaneous blood sugar level of the clinical standard blood-based personal blood glucose measurement system.