Active Contour Model, that is, Snake algorithm is effective for detection and tracking the objects. However, this algorithm has some drawbacks; numerous parameters must be designed(weighting factors, iteration steps, etc.), a reasonable initialization must be available and moreover suffers from numerical instability. Therefore we propose a novel Energy Corrected Snake(ECS) algorithm which improved on external energy of Snake algorithm for detection and tracking the moving object more effectively. The proposed algorithm uses the difference image, getting when the object is moving. It copies four direction images from the difference image and performs the accumulating compute to erasing image noise, so that it gets external energy steadily. Then external energy united with contour that is computed by internal energy. Consequently we can detect and track the moving object more speedily and easily. To show the effectiveness of the proposed algorithm, we experiment on 3 situations. The experimental results showed that the proposed algorithm outperformed by 6$\sim$9% of detection rate and 6$\sim$11% of tracker detection rate compared with the Snake algorithm.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.05a
/
pp.147-152
/
2003
출입국 관리 시스템은 위조 여권 소지자, 수배자, 출입국 금지자 또는 불법 체류자 등의 출입국 부적격자를 검색하여 출입국자를 관리하고 있다. 이러한 출입국 관리 시스템은 위조 여권 판별이 중요하므로 위조 여권을 판별하는 전 단계로 퍼지 RBF 네트워크 제안하여 여권을 인식하는 방법을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 수평 스미어링, 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출한다. 추출된 문자열 영역을 사다리꼴 타입의 소속 함수를 이용한 퍼지 이진화 방법을 제안하여 이진화하고 이진화된 문자열 영역에 대해서 개별 코드의 문자들을 복원하기 위하여 CDM 마스크를 적용한 후에 수직 스미어링을 적용하여 개별 코드의 문자를 추출한다. 개별 코드의 인식은 퍼지 ART 알고리즘을 개선하여 RBF 네트워크의 중간층으로 적용하는 퍼지 RBF 네트워크를 제안하여 적용한다. 제안된 방법의 성능을 확인하기 위해서 실제 여권영상을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.10a
/
pp.507-509
/
2015
본 논문에서는 지방종 초음파 영상에서 지방종을 자동적으로 추출하는 방법을 제안한다. 제안된 방법은 초음파 영상에 Monotone Cubic Spline 보간법을 이용하여 ROI영역을 추출한다. 추출된 ROI 영역에 Fuzzy Stretching 기법을 적용하여 명암 대비를 강조한 후, ART2 알고리즘과 8방향 윤곽선 추적 알고리즘을 적용하여 잡음을 제거한 후에 지방종의 후보 영역을 추출한다. 추출된 지방종의 후보 영역 중에서 형태학적으로 타원 형태를 띠거나 가장 큰 후보 영역의 정보를 이용하여 Labeling 기법을 적용하여 최종적으로 지방종 영역을 추출한다. 제안된 방법을 지방종 초음파 영상에 실험한 결과, 지방종 영역이 비교적 정확히 추출되는 것을 실험을 통하여 확인하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2006.05a
/
pp.291-296
/
2006
일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 환경으로 인한 식별자의 형태가 훼손되어 있기 때문에 일정한 규칙으로는 찾기 힘들다. 본 논문에서는 컨테이너 영상에 대해 ART2 알고리즘을 적용하여 컨테이너 영상을 양자화한다. 제안된 ART2 알고리즘 기반 양자화 기법은 컬러정보를 클러스터링 한 후, 각 클러스터의 중심 패턴을 이용하여 원 영상의 컬러정보를 분류한다. 양자화된 컨테이너 영상에서 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 추출된 개별 식별자는 ART2 기반 RBF 네트워크를 개선하여 인식에 적용한다. 실제 컨테이너 영상 300장에 대해 실험한 결과, 제안한 컨테이너 식별자 인식 방법의 추출 및 인식 성능이 기존의 컨테이너 식별자 인식 방법 보다 개선된 것을 확인하였다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2002.11a
/
pp.529-534
/
2002
출입 관리는 위조 여권 소지자, 수배자, 출입국 금지자 또는 불법 체류자 등의 출입국 부적격자를 검색하고 출입국자를 관리하기 위하여 행하여진다. 한편, 여권에는 사진, 국적, 성명, 주민등록번호, 성별, 여권번호 등을 포함한 정보들로 이루어져 있다. 이러한 출입국 관리 시스템은 출입국 심사 시간이 길어 출입국자에게 불편이 따르고 또한 출입국 부적격자에 대한 정확한 검색이 불분명하여 체계적으로 관리하기가 어렵다. 이러한 종래의 문제점을 개선하기 위해 영상 처리와 문자 인식을 이용한 여권 인증 시스템을 제안한다. 본 논문에서는 여권 영상에 대해 소벨 연산자와 스미어링 기법 그리고 윤곽선 추적 알고리즘을 이용하여 사진영역, 코드 영역 및 개별 코드 문자를 추출하였다. 추출된 개별 코드 인식은 ART2 알고리즘을 기반으로 한 RBF 신경망을 제안하여 여권 인식에 적용하였다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상들을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.37
no.1
/
pp.11-20
/
2000
This paper presents the method of extracting the contour and shape parameters for moving object tracking in traffic scenes. The contour is extracted by applying difference image method in reduction image and the features are extracted from original image to grow the accuracy of tracking. We used features such as circle distribution, center moment, and maximum and minimum ratio. Data association problem is solved by these features. Kalman filters are used for moving object tracking on real time. The simulation results indicate that the proposed algorithm appears to generate feature vectors good enough for multiple vehicle tracking.
In this paper, we propose that fast tracking algorithm for moving object is separated from background, using partial boundary line information. After detecting boundary line from input image, we track moving object by using the algorithm which takes boundary line information as feature of moving object. we extract moving vector on the imput image which has environmental variation, using high-performance BMA, and we extract moving object on the basis of moving vector. Next, we extract boundary line on the moving object as an initial feature-vector generating step for the moving object. Among those boundary lines, we consider a part of the boundary line in every direction as feature vector. And then, as a step for the moving object, we extract moving vector from feature vector generated under the information of the boundary line of the moving object on the previous frame, and we perform tracking moving object from the current frame. As a result, we show that the proposed algorithm using feature vector generated by each directional boundary line is simple tracking operation cost compared with the previous active contour tracking algorithm that changes processing time by boundary line size of moving object. The simulation for proposed algorithm shows that BMA operation is reduced about 39% in real image and tracking error is less than 2 pixel when the size of feature vector is [$10{\times}5$] using the information of each direction boundary line. Also the proposed algorithm just needs 200 times of search operation bout processing cost is varies by the size of boundary line on the previous algorithm.
Journal of Korea Society of Industrial Information Systems
/
v.11
no.3
/
pp.40-46
/
2006
Automatic recognition of container identifier is one of key factor to implement port automation and increase distribution throughput. In this paper, I propose a method of container identifier recognition on various input images using color based edge detection and character verification algorithm, I tested the proposed method on 350 container images and it showed good results.
In general, the extraction and recognition of identifier is very hard work, because the scale or location of identifier is not fixed-form. And, because the provided image is contained by camera, it has some noises. In this paper, we propose methods for automatic detecting edge using canny edge mask. After detecting edges, we extract regions of identifier by detected edge information's. In regions of identifier, we extract each identifier using contour tracking algorithm. The self-generation supervised learning algorithm is proposed for recognizing them, which has the algorithm of combining the enhanced ART1 and the supervised teaming method. The proposed method has applied to the container images. The extraction rate of identifier obtained by using contour tracking algorithm showed better results than that from the histogram method. Furthermore, the recognition rate of the self-generation supervised teaming method based on enhanced ART1 was improved much more than that of the self-generation supervised learning method based conventional ART1.
Journal of the Korea Society of Computer and Information
/
v.3
no.1
/
pp.81-94
/
1998
In order to extract the contour of interesting object in the image, Kass suggested the Active Contour Model called "Snakes". Snakes is a model which defines the contour of image energy. It also can find the contour of object by minimizing these energy functions. The speed of this model is slow and this model is sensitive of initialization. In order to improve these problems, Gunn extracted the accurate contour by using two initialization. and operated to less sensitive of initialization. This method could extract more accurate contour than the existing method, but it had no effect in the speed and it was sensitive of noise. This paper applied to the Energy Minimization Algorithm about only the pixel within the window applying the window of 8$\times$8 size at each contour point consisting Snakes in order to solve these problems. The method offered in this paper is applied to extract the contour of original image and cup image added to gaussian noise. By tracking the face using this offered method, it is applied to virtual reality and motion tracking. tracking.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.