• 제목/요약/키워드: 윤곽선 추적알고리즘

검색결과 118건 처리시간 0.022초

깊이 영상 기반 손 영역 추적 및 손 끝점 검출 (Hand Region Tracking and Fingertip Detection based on Depth Image)

  • 주성일;원선희;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.65-75
    • /
    • 2013
  • 본 논문에서는 깊이 영상만을 이용하여 손 영역 추적 및 손 끝점 검출 방법을 제안한다. 조명 조건의 영향을 제거하고 빠르고 안정적인 정보 획득을 위해 깊이 정보만을 이용하는 추적 방법을 제안하고, 영역 확장 방법을 통해 추적 과정 중에 발생할 수 있는 오류에 대한 판단 방법과 다양한 제스처 인식에 응용이 가능한 손 끝점 검출 방법을 제안한다. 먼저 추적점을 찾기 위해 중심점 전이 과정을 통해 최근접점을 찾고 그 점으로부터 영역 확장을 통해 손 영역과 경계선을 검출한다. 그리고 영역 확장을 통해 획득한 무효경계선의 비율을 이용하여 추적영역에 대한 신뢰도를 계산함으로써 정상 추적 여부를 판단한다. 정상적인 추적인 경우, 검출된 손 영역으로부터 윤곽선을 추출하고 곡률 및 RANSAC, 컨벡스 헐(Convex-Hull)을 이용하여 손 끝점을 검출한다. 마지막으로 성능 검증을 위해 다양한 상황에 따른 정량적, 정성적 분석을 통해 제안하는 추적 및 손 끝점 검출 알고리즘의 효율성을 입증한다.

형태학적 특징과 퍼지 ART 알고리즘을 이용한 신 차량 번호판 인식 (A New Car License Plate Recognition Using Morphological Characteristic and Fuzzy ART Algorithm)

  • 강효주;김미정;강혜민;박충식;이종희;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.413-417
    • /
    • 2007
  • 2006년 11월 이후 신 차량 번호판 등장 후, 신 차량 번호판 차량이 꾸준히 증가하고 있다. 이에 따라 속도위반, 신호위반 단속, 무인 주차 관리 시스템, 범죄 및 도주 차량 검거, 고속도로 톨게이트에서 통행료 지불로 인한 교통 체증현상을 해소하기 위한 자동 요금 징수와 같은 다양한 경우에서 신 자동차 번호판의 특징에 맞는 인식 시스템이 요구되고 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 지능형 신 자동차 번호판 인식 방법을 제안한다. 무인 카메라에서 획득된 신 차량 영상을 그레이 레벨로 변환한 후에 블록 이진화한다. 블록 이진화된 차량 영상을 대상으로 차량의 형태학적 특징을 적용하여 잡음을 제거한 후, 번호판 영역을 추출한다. 추출된 번호판 영역에 대해 Grassfire 알고리즘을 적용하여 개별 코드를 추출한다. 차량 번호판을 인식하기 위하여 추출된 개별 코드를 퍼지 ART 알고리즘을 적용하여 학습 및 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 100장의 차량 영상을 대상으로 실험한 결과, 제안된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.

  • PDF

ART-1과 PCA 알고리즘을 이용한 주민등록증 인식 (Recognition of Resident Registration Cards Using ART-1 and PCA Algorithm)

  • 박성대;우영운;김광백
    • 한국정보통신학회논문지
    • /
    • 제11권9호
    • /
    • pp.1786-1792
    • /
    • 2007
  • 본 논문에서는 ART-1 알고리즘을 이용한 개별코드 인식과 PCA 알고리즘을 적용한 주민등록증 인증방법을 제안한다. 주민등록증 영상에서 주민등록번호와 발행일을 추출하기 위하여 Sobel 마스크와 median 필터를 적용하였다. 잡음이 제거 된 영상에 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 추출하고 반복 이진화를 적용하여 이진 영상을 획득한 후, 이진화 과정에서 손실된 개별 코드의 영역을 복원하기 위해, 수직 스미어링을 적용한다. 영역이 복원된 영상에서 4 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출하고 얼굴인증을 위해 주민등록증의 형태학적 특징과 얼굴후보 영역의 눈과 입의 위치 정보를 이용하여 얼굴영역을 추출한다. 추출된 주민등록번호와 발행일은 ART-1 알고리즘을 적용하여 주민등록 번호와 발행일을 인식하고 PCA 알고리즘을 적용하여 주민등록증 사진의 얼굴 영역을 인증한다. 제안된 주민등록증 인식 방법의 성능평가를 위해 원본 주민등록증 영상 25개를 대상으로 실험한 결과, 325개의 주민등록번호와 167개의 발행일 중에서 각각 323개와 166개가 인식되었다. 그리고 사진과 얼굴부분을 위조한 주민등록증 25에 대해 얼굴 인증을 실험한 결과, 얼굴 인증에 있어서 효율적인 것을 확인하였다.

차 연산과 ART2 알고리즘을 이용한 차량 번호판 통합 인식 (Recognition of Car License Plates Using Difference Operator and ART2 Algorithm)

  • 김광백;김성훈;우영운
    • 한국정보통신학회논문지
    • /
    • 제13권11호
    • /
    • pp.2277-2282
    • /
    • 2009
  • 본 논문에서는 형태학적 특징 및 차 연산과 ART2 알고리즘을 이용한 차량 번호판 인식 방법을 제안하였다. 무인 카메라에서 획득된 차량 번호판 영상에서 차 연산을 이용하여 에지를 추출한 후에 블록 이진화한다. 이진화된 차량 영상에서 신 구 차량 번호판의 형태학적 특성을 8방향 윤곽선 추적 알고리즘에 적용하여 잡음 영역을 제거하고, 차량의 번호판 영역을 추출한다. 추출된 번호판 영역에 대하여 평균 이진화와 최대 최소 이진화를 적용하여 번호판의 개별 영역에 대한 형태학적 특성을 고려하여 잡음을 제거하고, Labeling 알고리즘을 적용하여 개별 문자를 추출한 후에 결합한다. 이렇게 추출되어 결합된 개별 문자 및 숫자 코드들은 ART2 알고리즘에 적용하여 학습 및 인식된다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 녹색 번호판과 흰색 번호판 이미지 각각 100장을 대상으로 실험한 결과, 제안된 차량 번호판 추출 및 인식기법이 효율적임을 확인하였다.

SOM 알고리즘을 이용한 차량 번호판 인식과 주차 관리 시스템 개발 (Recognition of Car Plate using SOM Algorithm and Development of Parking Control System)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제7권5호
    • /
    • pp.1052-1061
    • /
    • 2003
  • 본 논문은 SOM 알고리즘을 이용한 차량 번호판 인식 방법을 제안하고 차량 번호판 인식을 이용한 주차관리 시스템 개발에 대해서 기술한다. 차량 영상에서 번호판 영역을 추출하기 위해 수평$.$수직 에지의 형태학적 정보를 이용하고, 추출된 번호판에서 문자를 포함하는 특징 영역을 추출하기 위해 4 방향 윤곽선 추적 알고리즘을 이용한다. 추출된 특징 영역의 인식은 SOM 알고리즘을 적용한다. 50개의 실제 차량 영상을 실험한 결과, 제안된 번호판 영역 추출 방법이 기존의 RGB 정보를 이용한 방법과 HSI를 이용한 방법보다 추출율이 개선되었다. 그리고 SOM 알고리즘을 이용한 차량 번호판 인식이 효율적인 것을 확인하였다. 실험을 통하여 성능 향상을 보인 제안된 차량 번호판 인식 방법을 이용하여 주차 관리 시스템을 개발하였다.

형태학적 특징 및 차 연산과 ART2 알고리즘을 이용한 차량 번호판 인식 (A Car License Plate Recognition Using Morphological Characteristic, Difference Operator and ART2 Algorithm)

  • 강무진;김재군;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.431-435
    • /
    • 2008
  • 2006년 11월 이후 신 차량 번호판 등장 후, 신 차량 번호판과 구 차량 번호판이 혼합되어 있다. 이에 따라 속도위반, 신호위반 단속, 무인 주차관리 시스템, 범죄 및 도주 차량 검거, 고속도로 톨게이트에서 통행료 지불로 인한 교통 체증현상을 해소하기 위한 자동 요금 징수와 같은 다양한 경우에서 자동차 번호판의 특징에 맞는 인식 시스템이 요구되고 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 형태학적 특징 및 차 연산과 ART2 알고리즘을 이용한 차량 번호판 인식 방법을 제안한다. 무인 카메라에서 획득된 차량 번호판 영상에서 차 연산을 이용하여 에지를 추출한 후에 블록 이진화를 한다. 이진화 된 차량 영상에서 신 구 차량 번호판의 형태학적 특성을 8방향 윤곽선 추적 알고리즘에 적용하여 잡음 영역을 제거하고, 차량의 번호판 영역을 추출한다 추출된 번호판 영역에 대하여 평균 이진화와 최대 최소 이진화를 적용하여 번호판의 개별 영역에 대한 형태학적 특성을 고려하여 잡음을 제거하고, Labeling 알고리즘을 적용하여 개별 문자를 추출한 후에 결합한다. 이렇게 분류된 개별 문자 및 숫자 코드를 ART2 알고리즘에 적용하여 학습 및 인식을 한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 녹색 번호판과 흰색 번호판 이미지 각각 100장을 대상으로 실험한 결과, 제시 된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.

  • PDF

컬러 정보와 오류역전파 신경망 알고리즘을 이용한 신차량 번호판 인식 (Recognition of a New Car Plate using Color Information and Error Back-propagation Neural Network Algorithms)

  • 이종희;김진환
    • 한국전자통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.471-476
    • /
    • 2010
  • 본 논문에서는 RGB 컬러 정보와 오류 역전파 신경망 알고리즘을 이용한 신 차량 번호판 인식 방법을 제안한다. 먼저, 차량 영상에서 평균 Blue값을 이용하여 차량 영상을 보정하고 픽셀값의 차를 이용하여 Red 후보 영역과 Green 후보 영역으로 구분한 후 오류 역전파 알고리즘에 적용하여 최종 Green 영역을 찾는다. 둘째, 수평 및 수직 히스토그램의 빈도수를 이용하여 번호판 영역을 추출한다. 마지막으로, 윤곽선 추적 알고리즘을 적용하여 개별 코드들을 추출하고, 오류 역전파 알고리즘을 적용하여 개별 코드들을 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위하여 실제 비영업용 신 차량 번호판에 적용한 결과, 제안된 번호판 추출 방법이 기존의 HSI(Hue Saturation Intensity) 정보를 이용한 번호판 추출 방법보다 추출률이 개선되었고 제안된 차량 번호판 인식 방법이 효율적인 것을 확인하였다.

영역 확장 기법과 오류 역전파 알고리즘을 이용한 자궁경부 세포진 영역 분할 및 인식 (Nucleus Segmentation and Recognition of Uterine Cervical Pop-Smears using Region Growing Technique and Backpropagation Algorithm)

  • 김광백;김성신
    • 한국정보통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.1153-1158
    • /
    • 2006
  • 자궁 경부 세포진 영상의 핵 영역 분할은 자궁 경부암 자동화 검색 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 자궁 경부 세포진 영상은 배경과 세포의 영역이 확실히 구분되지 않는 경우가 많기 때문에 이들을 확실히 구분하는 것이 매우 중요하다. 본 논문에서는 이러한 문제점을 해결하기 위해 자궁 경부 세포진 영상에서 Region growing 기법을 적용하여 세포 영상을 분할한다. Region growing 기법은 화소간의 유사도를 측정하여 영역을 확장하여 분할하는 방법이다. 세포와 배경이 분할된 영상을 일정 임계값을 이용하여 영상을 이진화 한 후, 8방향 윤곽선 추적 알고리즘을 이용해 세포 영역을 추출한다. 추출된 세포 영역을 원 영상인 RGB 컬러로 변환한 후에 K-means 알고리즘을 적용하여 각 세포 영역의 RGB 화소를 R, G, B 채널로 각각 분리하여 클러스터링 한다. 클러스터링된 각 각의 R, G, B 채널의 클러스터 값을 이용하여 HSI 모델로 변환시킨 후에 세포핵 영역의 Hue 정보를 추출한다. 추출된 세포핵의 특징을 오류 역전파 알고리즘을 적용하여 정상 세포와 비정상 세포를 분류하고 인식한다.

Hierarchical ART2 알고리즘을 이용한 악보 인식 (Musical Score Recognition Using Hierarchical ART2 Algorithm)

  • 김광백;우영운
    • 한국정보통신학회논문지
    • /
    • 제13권10호
    • /
    • pp.1997-2003
    • /
    • 2009
  • 음악 연구에 따른 컴퓨터의 역할이 점차 중요한 비중을 차지함에 따라 효과적인 악보 인식과 효율적인 악보의 편집 및 수정 방법이 요구된다. 기존의 수동 입력 방식에서는 악보를 부정확하게 입력하여 수정하는 경우에는 작업시간이 많이 소요되며, 각 수정 프로그램에서 만든 악보는 특정 프로그램에서만 재수정이 가능하다는 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위하여 이미 작성 되어있는 악보들을 자동으로 인식하는 방법을 제안한다. 제안된 악보 인식 방법은 수평 히스토그램을 이용하여 악보 이미지의 오선을 제거한 후, 4 방향 윤곽선 추적 알고리즘을 적용하여 잡음을 제거하고 Grassfire 알고리즘을 적응하여 악보 구성 기호들을 추출한다. 추출된 악보 구성 기호들은 hierarchical ART2 알고리즘을 적용하여 인식된다. 제안된 악보 인식 방법 의 성능을 평가하기 위해 100장의 악보 영상을 대상으로 실험한 결과, 제시된 hierarchical ART2 알고리즘을 이용한 악보 영상의 인식 방법이 효율적임을 확인하였다.

형태학적 정보와 개선된 신경망을 이용한 차량 번호판 인식 (Car Plate Recognition using Morphological Information and Enhanced Neural Network)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.684-689
    • /
    • 2005
  • 본 논문에서는 수평$\cdot$수직 에지의 형태학적 정보를 이용한 차량 번호판 추출과 개선된 신경망을 이용한 차량 번호판 인식 시스템을 제안한다. 번호판 영역은 수평 수직에지의 형태학적 정보를 이용하여 추출하고 개별 문자는 히스토그램 방법과 위치 정보를 이용한 방법에 윤곽선 추적 알고리즘을 병합하여 추출한다. 개별 문자 인식은 ART-1 알고리즘을 지도 학습 방법과 결합한 개선된 신경망을 제안하여 차량 번호판 인식에 적용한다. 제안된 방법의 성능을 확인하기 위하여 실제 차량 번호판들을 대상으로 실험한 결과, 수평$GF(2^m)$수직 에지의 형태학적 정보를 이용한 차량 번호판 추출 방법이 임계화를 이용한 차량 번호판 추출 방법, RGB와 HSI 컬러 정보를 각각 이용한 차량 번호판 추출 방법보다 추출룰이 개선되었으며, 인식 성능도 개선된 신경망의 학습 알고리즘이 기존의 학습 알고리즘들 보다 우수한 성능이 있음을 확인하였다.