본 논문에서는 깊이 영상만을 이용하여 손 영역 추적 및 손 끝점 검출 방법을 제안한다. 조명 조건의 영향을 제거하고 빠르고 안정적인 정보 획득을 위해 깊이 정보만을 이용하는 추적 방법을 제안하고, 영역 확장 방법을 통해 추적 과정 중에 발생할 수 있는 오류에 대한 판단 방법과 다양한 제스처 인식에 응용이 가능한 손 끝점 검출 방법을 제안한다. 먼저 추적점을 찾기 위해 중심점 전이 과정을 통해 최근접점을 찾고 그 점으로부터 영역 확장을 통해 손 영역과 경계선을 검출한다. 그리고 영역 확장을 통해 획득한 무효경계선의 비율을 이용하여 추적영역에 대한 신뢰도를 계산함으로써 정상 추적 여부를 판단한다. 정상적인 추적인 경우, 검출된 손 영역으로부터 윤곽선을 추출하고 곡률 및 RANSAC, 컨벡스 헐(Convex-Hull)을 이용하여 손 끝점을 검출한다. 마지막으로 성능 검증을 위해 다양한 상황에 따른 정량적, 정성적 분석을 통해 제안하는 추적 및 손 끝점 검출 알고리즘의 효율성을 입증한다.
2006년 11월 이후 신 차량 번호판 등장 후, 신 차량 번호판 차량이 꾸준히 증가하고 있다. 이에 따라 속도위반, 신호위반 단속, 무인 주차 관리 시스템, 범죄 및 도주 차량 검거, 고속도로 톨게이트에서 통행료 지불로 인한 교통 체증현상을 해소하기 위한 자동 요금 징수와 같은 다양한 경우에서 신 자동차 번호판의 특징에 맞는 인식 시스템이 요구되고 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 지능형 신 자동차 번호판 인식 방법을 제안한다. 무인 카메라에서 획득된 신 차량 영상을 그레이 레벨로 변환한 후에 블록 이진화한다. 블록 이진화된 차량 영상을 대상으로 차량의 형태학적 특징을 적용하여 잡음을 제거한 후, 번호판 영역을 추출한다. 추출된 번호판 영역에 대해 Grassfire 알고리즘을 적용하여 개별 코드를 추출한다. 차량 번호판을 인식하기 위하여 추출된 개별 코드를 퍼지 ART 알고리즘을 적용하여 학습 및 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 100장의 차량 영상을 대상으로 실험한 결과, 제안된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.
본 논문에서는 ART-1 알고리즘을 이용한 개별코드 인식과 PCA 알고리즘을 적용한 주민등록증 인증방법을 제안한다. 주민등록증 영상에서 주민등록번호와 발행일을 추출하기 위하여 Sobel 마스크와 median 필터를 적용하였다. 잡음이 제거 된 영상에 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 추출하고 반복 이진화를 적용하여 이진 영상을 획득한 후, 이진화 과정에서 손실된 개별 코드의 영역을 복원하기 위해, 수직 스미어링을 적용한다. 영역이 복원된 영상에서 4 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출하고 얼굴인증을 위해 주민등록증의 형태학적 특징과 얼굴후보 영역의 눈과 입의 위치 정보를 이용하여 얼굴영역을 추출한다. 추출된 주민등록번호와 발행일은 ART-1 알고리즘을 적용하여 주민등록 번호와 발행일을 인식하고 PCA 알고리즘을 적용하여 주민등록증 사진의 얼굴 영역을 인증한다. 제안된 주민등록증 인식 방법의 성능평가를 위해 원본 주민등록증 영상 25개를 대상으로 실험한 결과, 325개의 주민등록번호와 167개의 발행일 중에서 각각 323개와 166개가 인식되었다. 그리고 사진과 얼굴부분을 위조한 주민등록증 25에 대해 얼굴 인증을 실험한 결과, 얼굴 인증에 있어서 효율적인 것을 확인하였다.
본 논문에서는 형태학적 특징 및 차 연산과 ART2 알고리즘을 이용한 차량 번호판 인식 방법을 제안하였다. 무인 카메라에서 획득된 차량 번호판 영상에서 차 연산을 이용하여 에지를 추출한 후에 블록 이진화한다. 이진화된 차량 영상에서 신 구 차량 번호판의 형태학적 특성을 8방향 윤곽선 추적 알고리즘에 적용하여 잡음 영역을 제거하고, 차량의 번호판 영역을 추출한다. 추출된 번호판 영역에 대하여 평균 이진화와 최대 최소 이진화를 적용하여 번호판의 개별 영역에 대한 형태학적 특성을 고려하여 잡음을 제거하고, Labeling 알고리즘을 적용하여 개별 문자를 추출한 후에 결합한다. 이렇게 추출되어 결합된 개별 문자 및 숫자 코드들은 ART2 알고리즘에 적용하여 학습 및 인식된다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 녹색 번호판과 흰색 번호판 이미지 각각 100장을 대상으로 실험한 결과, 제안된 차량 번호판 추출 및 인식기법이 효율적임을 확인하였다.
본 논문은 SOM 알고리즘을 이용한 차량 번호판 인식 방법을 제안하고 차량 번호판 인식을 이용한 주차관리 시스템 개발에 대해서 기술한다. 차량 영상에서 번호판 영역을 추출하기 위해 수평$.$수직 에지의 형태학적 정보를 이용하고, 추출된 번호판에서 문자를 포함하는 특징 영역을 추출하기 위해 4 방향 윤곽선 추적 알고리즘을 이용한다. 추출된 특징 영역의 인식은 SOM 알고리즘을 적용한다. 50개의 실제 차량 영상을 실험한 결과, 제안된 번호판 영역 추출 방법이 기존의 RGB 정보를 이용한 방법과 HSI를 이용한 방법보다 추출율이 개선되었다. 그리고 SOM 알고리즘을 이용한 차량 번호판 인식이 효율적인 것을 확인하였다. 실험을 통하여 성능 향상을 보인 제안된 차량 번호판 인식 방법을 이용하여 주차 관리 시스템을 개발하였다.
2006년 11월 이후 신 차량 번호판 등장 후, 신 차량 번호판과 구 차량 번호판이 혼합되어 있다. 이에 따라 속도위반, 신호위반 단속, 무인 주차관리 시스템, 범죄 및 도주 차량 검거, 고속도로 톨게이트에서 통행료 지불로 인한 교통 체증현상을 해소하기 위한 자동 요금 징수와 같은 다양한 경우에서 자동차 번호판의 특징에 맞는 인식 시스템이 요구되고 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 형태학적 특징 및 차 연산과 ART2 알고리즘을 이용한 차량 번호판 인식 방법을 제안한다. 무인 카메라에서 획득된 차량 번호판 영상에서 차 연산을 이용하여 에지를 추출한 후에 블록 이진화를 한다. 이진화 된 차량 영상에서 신 구 차량 번호판의 형태학적 특성을 8방향 윤곽선 추적 알고리즘에 적용하여 잡음 영역을 제거하고, 차량의 번호판 영역을 추출한다 추출된 번호판 영역에 대하여 평균 이진화와 최대 최소 이진화를 적용하여 번호판의 개별 영역에 대한 형태학적 특성을 고려하여 잡음을 제거하고, Labeling 알고리즘을 적용하여 개별 문자를 추출한 후에 결합한다. 이렇게 분류된 개별 문자 및 숫자 코드를 ART2 알고리즘에 적용하여 학습 및 인식을 한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 녹색 번호판과 흰색 번호판 이미지 각각 100장을 대상으로 실험한 결과, 제시 된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.
본 논문에서는 RGB 컬러 정보와 오류 역전파 신경망 알고리즘을 이용한 신 차량 번호판 인식 방법을 제안한다. 먼저, 차량 영상에서 평균 Blue값을 이용하여 차량 영상을 보정하고 픽셀값의 차를 이용하여 Red 후보 영역과 Green 후보 영역으로 구분한 후 오류 역전파 알고리즘에 적용하여 최종 Green 영역을 찾는다. 둘째, 수평 및 수직 히스토그램의 빈도수를 이용하여 번호판 영역을 추출한다. 마지막으로, 윤곽선 추적 알고리즘을 적용하여 개별 코드들을 추출하고, 오류 역전파 알고리즘을 적용하여 개별 코드들을 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위하여 실제 비영업용 신 차량 번호판에 적용한 결과, 제안된 번호판 추출 방법이 기존의 HSI(Hue Saturation Intensity) 정보를 이용한 번호판 추출 방법보다 추출률이 개선되었고 제안된 차량 번호판 인식 방법이 효율적인 것을 확인하였다.
자궁 경부 세포진 영상의 핵 영역 분할은 자궁 경부암 자동화 검색 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 자궁 경부 세포진 영상은 배경과 세포의 영역이 확실히 구분되지 않는 경우가 많기 때문에 이들을 확실히 구분하는 것이 매우 중요하다. 본 논문에서는 이러한 문제점을 해결하기 위해 자궁 경부 세포진 영상에서 Region growing 기법을 적용하여 세포 영상을 분할한다. Region growing 기법은 화소간의 유사도를 측정하여 영역을 확장하여 분할하는 방법이다. 세포와 배경이 분할된 영상을 일정 임계값을 이용하여 영상을 이진화 한 후, 8방향 윤곽선 추적 알고리즘을 이용해 세포 영역을 추출한다. 추출된 세포 영역을 원 영상인 RGB 컬러로 변환한 후에 K-means 알고리즘을 적용하여 각 세포 영역의 RGB 화소를 R, G, B 채널로 각각 분리하여 클러스터링 한다. 클러스터링된 각 각의 R, G, B 채널의 클러스터 값을 이용하여 HSI 모델로 변환시킨 후에 세포핵 영역의 Hue 정보를 추출한다. 추출된 세포핵의 특징을 오류 역전파 알고리즘을 적용하여 정상 세포와 비정상 세포를 분류하고 인식한다.
음악 연구에 따른 컴퓨터의 역할이 점차 중요한 비중을 차지함에 따라 효과적인 악보 인식과 효율적인 악보의 편집 및 수정 방법이 요구된다. 기존의 수동 입력 방식에서는 악보를 부정확하게 입력하여 수정하는 경우에는 작업시간이 많이 소요되며, 각 수정 프로그램에서 만든 악보는 특정 프로그램에서만 재수정이 가능하다는 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위하여 이미 작성 되어있는 악보들을 자동으로 인식하는 방법을 제안한다. 제안된 악보 인식 방법은 수평 히스토그램을 이용하여 악보 이미지의 오선을 제거한 후, 4 방향 윤곽선 추적 알고리즘을 적용하여 잡음을 제거하고 Grassfire 알고리즘을 적응하여 악보 구성 기호들을 추출한다. 추출된 악보 구성 기호들은 hierarchical ART2 알고리즘을 적용하여 인식된다. 제안된 악보 인식 방법 의 성능을 평가하기 위해 100장의 악보 영상을 대상으로 실험한 결과, 제시된 hierarchical ART2 알고리즘을 이용한 악보 영상의 인식 방법이 효율적임을 확인하였다.
본 논문에서는 수평$\cdot$수직 에지의 형태학적 정보를 이용한 차량 번호판 추출과 개선된 신경망을 이용한 차량 번호판 인식 시스템을 제안한다. 번호판 영역은 수평 수직에지의 형태학적 정보를 이용하여 추출하고 개별 문자는 히스토그램 방법과 위치 정보를 이용한 방법에 윤곽선 추적 알고리즘을 병합하여 추출한다. 개별 문자 인식은 ART-1 알고리즘을 지도 학습 방법과 결합한 개선된 신경망을 제안하여 차량 번호판 인식에 적용한다. 제안된 방법의 성능을 확인하기 위하여 실제 차량 번호판들을 대상으로 실험한 결과, 수평$GF(2^m)$수직 에지의 형태학적 정보를 이용한 차량 번호판 추출 방법이 임계화를 이용한 차량 번호판 추출 방법, RGB와 HSI 컬러 정보를 각각 이용한 차량 번호판 추출 방법보다 추출룰이 개선되었으며, 인식 성능도 개선된 신경망의 학습 알고리즘이 기존의 학습 알고리즘들 보다 우수한 성능이 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.