• Title/Summary/Keyword: 유해 gas

Search Result 417, Processing Time 0.03 seconds

Efficient bio-gas desulfurization purification technology development Using ion-exchange fibers (이온교환섬유를 이용한 바이오가스 고효율 탈황정제기술 개발)

  • Tak, Bong-Yeol;Tak, Bong-Sik;Min, Gil-Ho;Lee, Sang-Min;Lee, Won-Gu;Lee, So-A
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.116-116
    • /
    • 2011
  • 바이오 가스 플랜트의 혐기소화 공정에서 발생하는 바이오 가스는 중 유해가스인 황하수소($H_2S$)는 부식성 가스로 수천 PPM농도를 함유하여, 발전기나 가스보일러로 이용하는 경우에는 $H_2S$를 제거하는 탈황공정이 반드시 필요하다. 탈황방식에는 산화철 탈황(건식 탈황)과 생물 탈황이 현재 많이 사용되고 있어나 산화철 탈황은 산화철 pellet이 유화철에 변화하면 탈황능력이 저하되어 pellet을 교환해야 하며 많은 비용이 발생한다. 생물 탈황 방식은 유황산화세균의 서식활동조건(온도, 반응시간, 산소량)확보가 반드시 필요하여 높은 운전기술을 필요로 한다. 본 연구에서는 바이오가스 전처리 기술 중 활성탄 또는 약액을 이용한 기존의 탈황정제방식보다 흡착성능이 뛰어난 이온교환섬유를 이용하여, 황화수소($H_2S$)를 95% 이상 제거할 수 있는 고효율 섬유상 이온촉매 악취제거 시스템 개발을 수행하였다. 이온교환섬유는 방사선 조사를 이용하여 부직포에 라디칼을 인위적으로 형성시켜(그라프트 중합) 양이온 또는 양이온을 교환할 수 있도록 제조된 섬유상의 흡착제로, 이온교환 섬유의 화학적 이온교환과 물리적 흡착 및 탈착반응이 동시에 발생되고, 활성탄/실리카켈 보다 흡착능력이 2~4배 높다. 또한 이온섬유의 재생기능을 이용하여 장기적 다양한 악취($H_2S$, $NH_3$, 아민계, 메르갑탄류, 알데히드 등) 및 유해가스(VOCs, NOx, SOx) 등을 95% 이상 제거할 수 있다.

  • PDF

Role of Plant Extracts to Remove Hydrogen Sulfide in the Air-Lifter Reactor (Air-lift 반응기내 황화수소제거시 식물정유추출물의 역할)

  • Park, Jong-Woo;Park, Young-G.;Kim, Jeong-In
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.421-428
    • /
    • 2010
  • This paper reports on the experimental investigation carried out to evaluate the physical optimal conditions in the absorption column to remove odorous hydrogen sulfide gas. Hydrogen sulfide gas, as a highly undesirable contaminant, is most widely emitted from environmental treatment facilities. The absorbent mixed with natural second metabolites extracted from conifer trees and chemical absorbent of 2-aminoethanol was applied to remove it via chemical neutralization. The absorbent of natural second metabolites was achieved by a removal efficiency of 20-40% by itself depending on the treatment conditions, but the complex absorbent mixed with 0.1% amine chemical provides the removal efficiency of 98%. The optimal removal efficiencies have been examined against the two major parameters of temperature and pH. This study shows that the aqueous solution by natural second metabolites can be used as an appropriate absorbent in the column absorbed for the removal of hydrogen sulfide gas.

A Study on Characteristic of Eco-friendly Propellant Using GUDN/BTATz (GUDN/BTATz를 적용한 친환경추진제 특성 연구)

  • Jeon, Su-a;Won, Jong-ung;Park, Sung-jun;Park, Jung-ho;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.41-47
    • /
    • 2020
  • This study aims to develop eco-friendly propellant that reduce the generation of harmful gases such as HCl gas and increase the emmision of nitrogen gas emissions. For this purpose, GUDN(N-Guanylurea dinitramide) and BTATz(3,6-bis(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine), which are low carbon high nitrogen materials, were used instead of AP(Ammonium Perchlorate) and Al(Aluminium), which are gernerally used in solid propellant. The prepared propellants were analyzed for mechanical properties and combustion characteristics, performance and AGARD smoke classification. Compared with AP/Al propellant, GUDN/BTATz propellant tended to decrease mechanical and combustion rate. Also, as a result of the static test after the production of the 4-inch motor, the performance of combustion of the GUDN/BTATz propellant decreased, but it was confirmed that the secondary smoke was improved by reducing harmful gases such as HCl gas.

A Study on Flow Analysis according to the Cause of Gas Leakage in the Specialty Gas Supply Device for Semiconductors (반도체용 특수가스 공급장치 내부에서의 가스누출 원인에 따른 유동해석에 관한 연구)

  • Kim, Jung-Duck;Kwon, Ki-sun;Rhim, Jong-Guk;Yang, Won-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.42-51
    • /
    • 2021
  • Facilities that supply specialty gases used in semiconductor manufacturing mainly handles with hazardous and dangerous substances with flammable, toxic, and corrosive properties, and gas cabinets are mainly used as such supply facilities. The effects of the supply facilities were analyzed for each leak through the rupture disk in the gas cabinet and a leak where the leak hole. In this case, gas leaked to the outside depending on the leak area. It is a factor that creates a risk depending on the concentration of the leaked gas. Depending on the risk of leakage, all measures such as safe operation procedures should be reviewed again.

Review on Toxic Substances in the Liquid and Gas Phases of Electronic Cigarettes (전자담배 액상 및 기체상 중 유해물질 고찰)

  • Shin, Ho-Sang
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.6
    • /
    • pp.483-491
    • /
    • 2013
  • Objectives: Electronic cigarettes are battery powered devices that convert a nicotine-containing liquid into an inhalable vapor. The device aerosolizes nicotine so that it is readily entrained into the respiratory tract, from where it enters the bloodstream. Information on the safety of E-cigarettes is required. Methods: Seventeen articles on studies analyzing toxic substances in the liquid and gas phases of electronic cigarettes were reviewed. Results: Tobacco-specific nitrosamines, bis(2-ethylhexyl) phthalate, formaldehyde and acetaldehyde, known to be carcinogenic agents in humans or animals, were detected in the liquid and gas phases. In addition, diethyl phthalate, acetone, ethanol, cresol, xylene, propylene, styrene, triethylene glycol, tetraethylene glycol, pentaethylene glycol cis-3-hexen-1-ol, methyl cinnamate and undecane were identified in the liquid and gas phases of E-cigarettes. Propylene glycol, glycerin, 1-methoxy-2-propanol, 1-hydroxy-2- propanone, acetic acid, 1-menthone, 2,3-butanediol, menthol, carvone, maple lactone, benzyl alcohol, 2-methyl-2-pentanoic acid, ethyl mantel, ethyl cinnamate, myosamine, benzoic acid, 2,3-bipyridine, cotinine, hexadecanoic acid, and 1'1-oxybis-2-propanol were detected in the vapors of E-cigarettes. Conclusion: The hazardous compounds identified in the liquid and gas phases of E-cigarettes should be controlled for the lowest concentrations in the raw materials and production procedures.

Decontamination Performance Assessment for the Plasma Arc Vitrification pilot plant on the basis of Trial Burn Results(I) - Decontamination Characteristics for Hazardous Metal, Radioactive surrogate and Radioactive Tracer in Off-gas (시험연소결과에 근거한 플라즈바 아크방식 유리화 시험 설비의 제염성능 평가(I) - 배기가스중의 유해중금속, 방사성핵종 모의물질 및 방사성핵종 제염특성 -)

  • Chae, Gyung-Sun;Park, Youn-Hwan;Min, Byong-Yun;Chang, Jae-Ock;Park, Jun-Yong;Jeong, Weon-Ik;Moon, Byung-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.99-107
    • /
    • 2000
  • Through the results of off-gas analysis at 3 sampling points in Plasma Arc Melting vitrification pilot plant, it was evaluated the partitioning of spiked materials in off-gas and the decontamination characteristic of off-gas treatment system. Spiked materials are hazard_us heavy metals(Pb, Cd, Hg), radioactive surrogate(Co, Cs) and radioactive materials($^{60}Co,\;^{137}Cs$). Through the Trial burn tests, Decontamination factor of spiked materials in off-gas treatment system is calculated.

  • PDF

Characteristics of Exhaust Gas Temperature and Harmful Emission During Cold Start Transient Operation in an SI Engine (가솔린엔진의 냉시동 천이구간에서 배출가스 온도 및 유해배출물 특성에 관한 연구)

  • Cho, Yong-Seok;Jeong, Dae-Chul;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1181-1187
    • /
    • 2006
  • Stringent regulations of exhaust emission from vehicles become a major issue in automotive industries. In SI engines, it is one of the crucial factor to reduce exhaust emissions during cold start in order to meet stringent regulations such as SULEV or EURO-4, because SI engines emit a large portion of total harmful exhaust compounds when they are cold. At early stages of cold start in gasoline engines, exhaust gas temperature plays a key role to improve three way catalyst by virtue of fast warmup. Therefore, this study focused on the increase of exhaust gas temperature under controls of engine operating parameters such as spark ignition timing, valve overlap by virtue of intake VVT and catalyst heating function. Furthermore, effects on harmful emission due to these parameters are also investigated. Experiments showed that retarded spark ignition timings and increased valve overlap may be helpful to increase exhaust gas temperature. It was also found that $NO_x$ was decreased with increased valve overlap. This study also showed that sudden changes in ISA and amount of fuel due to the deactivation of catalyst heating function cause temporal increase of harmful emissions.

A Study on the USN Zigbee Sensor Node for Transmission to Harmful Gas(CO, CO2) Sensing Data (유해가스(CO, CO2) 감지정보 전송을 위한 USN 지그비센서노드 구현)

  • Cheon, Dong-Jin;Park, Young-Jik;Lee, Seung-Ho;Kim, Jeong-Seop;Kwak, Dong-Kurl;Jung, Do-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1302-1308
    • /
    • 2010
  • In this study, Zigbee Sensor Node to transmit harmful gases CO and $CO_2$ information using wireless communication within the ground and underground structures were developed. Wireless communication protocol was used Zigbee Stack included IEEE 802. 15.4 MAC protocol. For wireless transmission of detected harmful gas signal from ADC of MCU was implemented Zigbee Sensor Node that was developed protocol using Serial-Port-Profile(SPP) here. The proposed Zigbee Sensor Node was verified transmission distance from experiments. Transmission distance was into 90m in experiments. Distance experiments were measured at 10m intervals using sine & pulse wave input signal at indoors. The proposed Route Sensor Node was applied mesh routing protocol. When built up USN(Ubiquitous Sensor Network)using Route Sensor Node, transmission distance was not limited. On the experimental results, harmful gas values between direct measurements and USN measurements were consistent. The semiconductor CO sensor and N-DIR $CO_2$ sensor module as a harmful sensor was used. Therefore, the proposed Zigbee Sensor Node was verified about reliability and validity to build USN for transmission of harmful gas information.

Implementation of simple statistical pattern recognition methods for harmful gases classification using gas sensor array fabricated by MEMS technology (MEMS 기술로 제작된 가스 센서 어레이를 이용한 유해가스 분류를 위한 간단한 통계적 패턴인식방법의 구현)

  • Byun, Hyung-Gi;Shin, Jeong-Suk;Lee, Ho-Jun;Lee, Won-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.406-413
    • /
    • 2008
  • We have been implemented simple statistical pattern recognition methods for harmful gases classification using gas sensors array fabricated by MEMS (Micro Electro Mechanical System) technology. The performance of pattern recognition method as a gas classifier is highly dependent on the choice of pre-processing techniques for sensor and sensors array signals and optimal classification algorithms among the various classification techniques. We carried out pre-processing for each sensor's signal as well as sensors array signals to extract features for each gas. We adapted simple statistical pattern recognition algorithms, which were PCA (Principal Component Analysis) for visualization of patterns clustering and MLR (Multi-Linear Regression) for real-time system implementation, to classify harmful gases. Experimental results of adapted pattern recognition methods with pre-processing techniques have been shown good clustering performance and expected easy implementation for real-time sensing system.

A Study on the Pyrolysis and Combustion Properties on Industrial Plastics (산업용 플라스틱 재료의 열분해 및 연소 특성에 관한 연구)

  • Lim, Bosu;An, Hyunghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.46-51
    • /
    • 2016
  • This study is analyzed by the test equipment of gas analyzer in order to discover the gas characteristics of industrial plastic under the pyrolysis and combustion. As results, first, the pyrolysis of polycarbonate was started at $400{\sim}450^{\circ}C$. The combustion started at about $608^{\circ}C$, and the weight decreased at the velocity was 0.03g/min. Second, in case of polyethyleneterephtalate, PET was finished at $620^{\circ}C$ after starting pyrolysis from $420^{\circ}C$, and the weight decreased at the velocity of 0.044g/min. The pyrolysis velocity with the temperature of polyethyleneterephtalate rising was becoming slow and the pyrolysis temperature was higher with less added polyethyleneterephtalate.